书生·浦语大模型开源体系(二)笔记

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
请添加图片描述

文章目录

  • 🍋1. 部署 InternLM2-Chat-1.8B 模型进行智能对话
  • 🍋2. 部署实战营优秀作品 八戒-Chat-1.8B 模型
  • 🍋3. 使用 Lagent 运行 InternLM2-Chat-7B 模型
  • 🍋4. 实践部署 浦语·灵笔2 模型
  • 🍋总结

🍋1. 部署 InternLM2-Chat-1.8B 模型进行智能对话

首先,打开 Intern Studio 界面,点击 创建开发机 配置开发机系统。
在这里插入图片描述
之后进入,点击终端输入环境配置命令

studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

配置完成后,进入到新创建的 conda 环境之中:

conda activate demo

输入以下命令,完成环境包的安装:

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

下载 InternLM2-Chat-1.8B 模型
按路径创建文件夹,并进入到对应文件目录中:

mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo

通过左侧文件夹栏目,双击进入 demo 文件夹。

双击打开 /root/demo/download_mini.py 文件,复制以下代码:

import os
from modelscope.hub.snapshot_download import snapshot_download# 创建保存模型目录
os.system("mkdir /root/models")# save_dir是模型保存到本地的目录
save_dir="/root/models"snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", cache_dir=save_dir, revision='v1.1.0')

执行命令,下载模型参数文件:

python /root/demo/download_mini.py

运行 cli_demo
双击打开 /root/demo/cli_demo.py 文件,复制以下代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("\nUser  >>> ")input_text = input_text.replace(' ', '')if input_text == "exit":breaklength = 0for response, _ in model.stream_chat(tokenizer, input_text, messages):if response is not None:print(response[length:], flush=True, end="")length = len(response)

输入命令,执行 Demo 程序:

conda activate demo
python /root/demo/cli_demo.py

等待模型加载完成,之后就可以输入内容进行创作了

🍋2. 部署实战营优秀作品 八戒-Chat-1.8B 模型

简单介绍 八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳(实战营优秀作品)
八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳 均是在第一期实战营中运用 InternLM2-Chat-1.8B 模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。

当然,同学们也可以参考其他优秀的实战营项目,具体模型链接如下:
八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini

配置基础环境
运行环境命令:

conda activate demo

使用 git 命令来获得仓库内的 Demo 文件:

cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial

下载运行 Chat-八戒 Demo
在 Web IDE 中执行 bajie_download.py:

python /root/Tutorial/helloworld/bajie_download.py

待程序下载完成后,输入运行命令:

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

待程序运行的同时,对端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)

打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

再复制下方的密码,输入到 password 中,直接回车
打开 http://127.0.0.1:6006 后,等待加载完成即可进行对话。

🍋3. 使用 Lagent 运行 InternLM2-Chat-7B 模型

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
    接口统一,设计全面升级,提升拓展性,包括:
  • Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
  • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
  • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

配置基础环境(开启 30% A100 权限后才可开启此章节)
打开 Intern Studio 界面,调节配置(必须在开发机关闭的条件下进行):
重新开启开发机,输入命令,开启 conda 环境:

conda activate demo

打开文件子路径

cd /root/demo

使用 git 命令下载 Lagent 相关的代码库:

git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装

使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体
Intern Studio 在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b 、InternLM2-Chat-1.8b 等等。我们可以在后期任务中使用 share 文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。

打开 lagent 路径:

cd /root/demo/lagent

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

打开 lagent 路径下 examples/internlm2_agent_web_demo_hf.py 文件,并修改对应位置 (71行左右) 代码:

# 其他代码...
value='/root/models/internlm2-chat-7b'
# 其他代码...

输入运行命令 - 点开 6006 链接后,大约需要 5 分钟完成模型加载:

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006

待程序运行的同时,对本地端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

后面依次是输入密码,之后就可以直接访问了

🍋4. 实践部署 浦语·灵笔2 模型

初步介绍 XComposer2 相关知识
浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:

  • 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
  • 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
  • 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。

配置基础环境(开启 50% A100 权限后才可开启此章节)

选用 50% A100 进行开发:

进入开发机,启动 conda 环境:

conda activate demo
# 补充环境包
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5

下载 InternLM-XComposer 仓库 相关的代码资源:

cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626

在 terminal 中输入指令,构造软链接快捷访问方式:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b

图文写作实战(开启 50% A100 权限后才可开启此章节)
继续输入指令,用于启动 InternLM-XComposer:

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py  \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006

待程序运行的同时,参考章节 3.3 部分对端口环境配置本地 PowerShell 。步骤雷同

图片理解实战(开启 50% A100 权限后才可开启此章节)
根据附录 6.4 的方法,关闭并重新启动一个新的 terminal,继续输入指令,启动 InternLM-XComposer2-vl:

conda activate democd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py  \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006

打开 http://127.0.0.1:6006 (上传图片后) 键入内容示例如下:
请分析一下图中内容即可

🍋总结

原文地址如下:https://github.com/InternLM/Tutorial/blob/camp2/helloworld/hello_world.md

在这里插入图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【tensorflow框架神经网络实现鸢尾花分类_Keras】

文章目录 1、前言2、鸢尾花分类3、结果打印 1、前言 【tensorflow框架神经网络实现鸢尾花分类】一文中使用自定义的方式,实现了鸢尾花数据集的分类工作。在这里使用tensorflow中的keras模块快速、极简实现鸢尾花分类任务。 2、鸢尾花分类 import tensorflow as t…

营销日历丨2024年4月营销日历火热出炉!四月热点抢先看

4月1日 愚人节 愚人节是一个充满欢乐和恶搞的节日,品牌可以巧妙地利用这个节点来开展一些有趣的营销活动。在这个特殊的日子里,品牌可以走“愚人”的恶搞路线,但需要注意的是,营销活动要把握好尺度,避免过度恶搞&#…

STM32F103通过labview上位机上传温湿度数据到OneNET物联网平台

资料下载地址:STM32F103通过labview上位机上传温湿度数据到OneNET物联网平台 本实验通过两个STM32单片机设备分别测量室内外的温湿度,并把数据发送到上位机上传到ONENET物联网平台。 大体数据传输流程如下: 首先是注册OneNET平台账号&#…

Docker Desktop 在 Windows 上的安装和使用

目录 1、安装 Docker Desktop 2、使用 Docker Desktop (1)运行容器 (2)查看容器信息 (3)数据挂载 Docker Desktop是Docker的官方桌面版,专为Mac和Windows用户设计,提供了一个简…

Axure RP 9下载教程,产品经理实战指南!

Axure rp 9是产品经理必备的专业快速原型设计工具。Axure rp 9可快速高效地创建产品原型图,绘制APP和网页原型图、框架图、结构图等。但是Axuree rp 9下载在用户体验中的缺陷也相对明显,其设置交互方式相对繁琐,可视化不足、条件判断、变量、…

泰克Tektronix MDO3054混合域示波器

181/2461/8938产品概述: Tektronix MDO3054 示波器,混合域,500 MHz,4 通道,5 GS/s 泰克 MDO3054 混合域示波器是终极 6 合 1 集成示波器,包括可选的集成频谱分析仪、任意函数发生器、逻辑分析仪、协议分析…

KNN算法 | K邻近:基础概念

目录 一. KNN算法原理二. KNN算法三要素1. K值的选择2. 距离2.1 欧氏距离2.2 曼哈顿距离(城市街区距离)2.3 切比雪夫距离(棋盘距离)2.4 闵可夫斯基距离2.5 标准化欧式距离2.6 余弦距离欧氏距离与余弦距离对比 3. 决策规则3.1 KNN分类任务多数表决法加权多数表决法 3.2 KNN回归任…

26番外1 对PE启动U盘的思考:制作启动盘,真的不用格式化!!!

番外1 对PE启动U盘的思考 我们在使用官方软件工具(如微PE工具箱)制作任何一个启动U盘的时候,他们总会提示我们:U盘需要格式化!!请备份好自己的数据!! 我一直在思考:为什么一定要格式化呢?需要格式化吗? 为了解决这个问题,我开始思考启动盘的本质. 启动盘的本质是什么?它怎么…

Android 自定义View 测量控件宽高、自定义viewgroup测量

1、View生命周期以及View层级 1.1、View生命周期 View的主要生命周期如下所示, 包括创建、测量(onMeasure)、布局(onLayout)、绘制(onDraw)以及销毁等流程。 自定义View主要涉及到onMeasure、…

风险与收益

风险与收益 影响资产需求的主要因素财富总量预期收益率资产的流动性影响流动性的主要因素 风险 如何降低风险系统风险和非系统风险机会集合与有效集合资产组合理论 影响资产需求的主要因素 影响资产需求的主要因素包括:财富总量、预期收益率、资产的流动性和风险。…

bashplotlib,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - bashplotlib。 Github地址:https://github.com/glamp/bashplotlib 在 Python 中,绘制图形通常需要使用专门的绘图库&#xff0…

【Redis】redis集群模式

概述 Redis集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。实际使用中集群一般由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护&#…

整数删除,蓝桥杯训练题

题目描述: 给定一个长度为 N 的整数数列:A1,A2,…,AN。 你要重复以下操作 K 次: 每次选择数列中最小的整数(如果最小值不止一个,选择最靠前的),将其删除,并把与它相邻的整数加上被删除的数值。 …

【4月2日更新】低至50元/年 京东云 阿里云 腾讯云服务器价格对比表 幻兽帕鲁 雾锁王国 我的世界 饥荒 通用

更新日期:4月2日 本文纯原创,侵权必究 【云服务器推荐】价格对比!阿里云 京东云 腾讯云 选购指南视频截图 《最新对比表》已更新在文章头部—腾讯云文档,文章具有时效性,请以腾讯文档为准! 【腾讯文档实…

Anaconda中利用conda创建、激活、删除、添加新环境

一、利用conda创建新环境 学多了,发现学习一些命令就跟学英语语法一样,比如利用conda 创建新环境,语法如下: conda create -n 新环境的名字 -n为--name的简写。利用我需要创建一个新的环境,取名为pycaret&#xff0c…

基于springboot的房屋租赁系统平台

功能描述 流程:房主登陆系统录入房屋信息》发布租赁信息(选择房屋)》租客登陆系统浏览租赁信息》和房主联系、看房(根据租赁信息单的电话线下沟通)》房主发起签约(生成邀请码)》租客登陆系统根…

【洛谷 P8700】[蓝桥杯 2019 国 B] 解谜游戏 题解(字符串+映射+周期性)

[蓝桥杯 2019 国 B] 解谜游戏 题目背景 题目描述 小明正在玩一款解谜游戏。谜题由 24 24 24 根塑料棒组成,其中黄色塑料棒 4 4 4 根,红色 8 8 8 根,绿色 12 12 12 根 (后面用 Y 表示黄色、R 表示红色、G 表示绿色)。初始时这些塑料棒排…

QML嵌套页面的实现学习记录

StackView是一个QML组件,用于管理和显示多个页面。它提供了向前和向后导航的功能,可以在堆栈中推入新页面,并在不需要时将页面弹出。 ApplicationWindow {id:rootvisible: truewidth: 340height: 480title: qsTr("Stack")// 抽屉:…

激光雷达的量产车方案

文章目录 现在的量产方案共同点与差异技术方案应用场景未来发展趋势 现在的量产方案 在量产车领域,半固态激光雷达技术的发展和应用是实现高级自动驾驶功能的关键技术之一。半固态激光雷达,与传统的固态激光雷达相比,其最大特点是在内部采用…

利用免费的开源AI引擎:打造企业级文档合规性智能审查平台

合同、法律文件、文档管理是企业和机构运营中不可或缺的一部分。随着文档数量的不断增加,传统的人工文档审查方式已经无法满足高效率和高质量的要求。文档合规性智能审查平台应运而生,它利用图像识别、自然语言处理等前沿技术,为文档审查工作…