深入解析Hadoop生态核心组件:HDFS、MapReduce和YARN

这里写目录标题

  • 01HDFS
  • 02Yarn
  • 03Hive
  • 04HBase
    • 1.特点
    • 2.存储
  • 05Spark及Spark Streaming
  • 关于作者:
  • 推荐理由:
  • 作者直播推荐:

一篇讲明白 Hadoop 生态的三大部件

进入大数据阶段就意味着进入NoSQL阶段,更多的是面向OLAP场景,即数据仓库、BI应用等。
大数据技术的发展并不是偶然的,它的背后是对于成本的考量。集中式数据库或者基于MPP架构的分布数据库往往采用的都是性能稳定但价格较为昂贵的小型机、一体机或者P C服务器等,扩展性相对较差;而大数据计算框架可以基于价格低廉的普通的硬件服务器构建,并且理论上支持无限扩展以支撑应用服务。

在大数据领域中最有名的就是 Hadoop 生态,总体来看,它主要由三部分构成:底层文件存储系统 HDFS(Hadoop Distributed File System,Hadoop 分布式文件系统)、资源调度计算框架 Yarn(Yet Another Resource Negotiator,又一个资源协调者)以及基于 HDFS 与 Yarn的上层应用组件,例如 HBase、Hive 等。一个典型的基于 Hadoop 的应用如下图所示。

请添加图片描述

一个典型的 Hadoop 应用

01HDFS

HDFS 被设计成适合运行在通用硬件(Commodity Hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点,例如典型的 Master-Slave 架构(这里不准备展开介绍),也有不同点,HDFS 是一个具有高度容错性的系统,适合部署在廉价的机器上。关于HDFS 这里主要想说两点,默认副本数的设置以及机架感知(Rack Awareness)。

HDFS 默认副本数是 3,这是因为 Hadoop 有着高度的容错性,从数据冗余以及分布的角度来看,需要在同一机房不同机柜以及跨数据中心进行数据存储以保证数据最大可用。因此,为了达到上述目的,数据块需要至少存放在同一机房的不同机架(2 份)以及跨数据中心的某一机架(1 份)中,共 3 份数据。

机架感知的目的是在计算中尽量让不同节点之间的通信能够发生在同一个机架之 内,而不是跨机架,进而减少分布式计算中数据在不同的网络之间的传输,减少网络带 宽资源的消耗。例如当集群发生数据读取的时候,客户端按照由近到远的优先次序决定 哪个数据节点向客户端发送数据,因为在分布式框架中,网络 I/O 已经成为主要的性能瓶颈。

只有深刻理解了这两点,才能理解为什么 Hadoop 有着高度的容错性。高度容错性是Hadoop 可以在通用硬件上运行的基础。

02Yarn

Yarn 是继 Common、HDFS、MapReduce 之 后 Hadoop 的又一个子项目, 它是在MapReduceV2 中提出的。

在 Hadoop1.0 中,JobTracker 由资源管理器(由 TaskScheduler 模块实现)和作业控制 (由 JobTracker 中多个模块共同实现)两部分组成。

在 Hadoop1.0 中,JobTracker 没有将资源管理相关功能与应用程序相关功能拆分开,逐 渐成为集群的瓶颈,进而导致集群出现可扩展性变差、资源利用率下降以及多框架支持不 足等多方面的问题。

在 MapReduceV2 中,Yarn 负责管理 MapReduce 中的资源(内存、CPU 等)并且将其 打包成 Container。这样可以使 MapReduce 专注于它擅长的数据处理任务,而不需要考虑资源调度。这种松耦合的架构方式实现了 Hadoop 整体框架的灵活性。

03Hive

Hive 是基于Hadoop 的数据仓库基础构架,它利用简单的 SQL 语句(简称 HQL)来查询、分析存储在 HDFS 中的数据,并把 SQL 语句转换成 MapReduce 程序来进行数据的处理。Hive与传统的关系型数据库的主要区别体现在以下几点。

1)存储的位置, Hive 的数据存储在 HDFS 或者 HBase 中,而后者的数据一般存储在裸设备或者本地的文件系统中,由于 Hive 是基于 HDFS 构建的,那么依赖 HDFS 的容错特性,Hive 中的数据表天然具有冗余的特点。

2)数据库更新, Hive 是不支持更新的,一般是一次写入多次读写(这部分从 Hive 0.14之后开始支持事务操作,但是约束比较多),但是由于 Hive 是基于 HDFS 作为底层存储的, 而 HDFS 的读写不支持事务特性,因此 Hive 的事务支持必然需要拆分数据文件以及日志文 件才能支持事务的特性。

3)执行 SQL 的延迟,Hive 的延迟相对较高,因为每次执行都需要将 SQL 语句解析成MapReduce 程序。

4)数据的规模上,Hive 一般是 TB 级别,而后者规模相对较小。

5)可扩展性上,Hive 支持 UDF、UDAF、UDTF,后者相对来说可扩展性较差。

04HBase

HBase(Hadoop Database)是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。它底层的文件系统使用 HDFS, 使用ZooKeeper 来管理集群的 HMaster 和各RegionServer 之间的通信,监控各RegionServer 的状态,存储各 Region 的入口地址等。

1.特点

HBase 是 Key-Value 形式的数据库(类比 Java 中的 Map)。既然是数据库那肯定就有 表,HBase 中的表大概有以下几个特点。

1)大:一个表可以有上亿行,上百万列(列多时,插入变慢)。

2)面向列:面向列(族)的存储和权限控制,列(族)独立检索。

3)稀疏:对于空(null)的列,并不占用存储空间,因此,表可以设计得非常稀疏。

4)每个单元格中的数据可以有多个版本,默认情况下版本号自动分配,是单元格插入 时的时间戳。

5)HBase 中的数据都是字节,没有类型定义具体的数据对象(因为系统需要适应不同 类型的数据格式和数据源,不能预先严格定义模式)。

这里需要注意的是,HBase 也是基于 HDFS,所以也具有默认 3 个副本、数据冗余的特 点。此外 HBase 也是利用 WAL 的特点来保证数据读写的一致性。

2.存储

HBase 采用列式存储方式进行数据的存储。传统的关系型数据库主要是采用行式存储 的方式进行数据的存储,数据读取的特点是按照行的粒度从磁盘上读取数据记录,然后根 据实际需要的字段数据进行处理,如果表的字段数量较多,但是需要处理的字段较少(特 别是聚合场景),由于行式存储的底层原理,仍然需要以行(全字段)的方式进行数据的查 询。在这个过程中,应用程序所产生的磁盘 I/O、内存要求以及网络 I/O 等都会造成一定的 浪费;而列式存储的数据读取方式主要是按照列的粒度进行数据的读取,这种按需读取的 方式减少了应用程序在数据查询时所产生的磁盘 I/O、内存要求以及网络 I/O。

此外,由于相同类型的数据被统一存储,因此在数据压缩的过程中压缩算法的选用以 及效率将会进一步加强,这也进一步降低了分布式计算中对于资源的要求。

列式存储的方式更适合 OLAP 型的应用场景,因为这类场景具有数据量较大以及查询字段较少(往往都是聚合类函数)的特点。例如最近比较火的 ClickHouse 也是使用列式存储的方式进行数据的存储。

05Spark及Spark Streaming

Spark 由 Twitter 公司开发并开源,解决了海量数据流式分析的问题。Spark 首先将数据 导入 Spark 集群,然后通过基于内存的管理方式对数据进行快速扫描,通过迭代算法实现 全局 I/O 操作的最小化,达到提升整体处理性能的目的。这与 Hadoop 从“计算”找“数据” 的实现思路是类似的,通常适用于一次写入多次查询分析的场景。

Spark Streaming 是基于 Spark 的一个流式计算框架,它针对实时数据进行处理和控制, 并可以将计算之后的结果写入 HDFS。它与当下比较火的实时计算框架 Flink 类似,但是二者在本质上是有区别的,因为 Spark Streaming 是基于微批量(Micro-Batch)的方式进行数据处理,而非一行一行地进行数据处理。

关于作者:

李杨,资深数据架构师,在数据相关领域有10年以上工作经验。头部保险资管公司科技平台交易系统团队开发组负责人,负责多个应用以及数据平台的建设、优化以及迁移工作。曾担任某数据公司技术合伙人,负责多个金融机构的数据仓库或数据平台相关的工作。《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》作者。

推荐理由:

一部从企业架构视角系统讲解企业级数据架构的著作,系统梳理和阐述了企业架构的基础知识,以及数据架构的组成要素、架构模型、数据治理和数据资产管理的理论知识。

作者直播推荐:

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/785022.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[游戏开发][UE5.3]代码生成蓝图文件并在代码中保存文件。

我看网上有人的做法比我更好,我这个更简单 UE5-GAS:读取Excel数据在蓝图创建并更新GE类 - 知乎 数据配表 测试编辑器API 创建编辑器蓝图文件,继承AssetActionUtility.h 创建在编辑器中显示的函数,可以用中文命名方便其他人使用。 右键任意…

从零开始学Python数据分析:菜鸟也能成高手(文末送书)

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

【数据结构与算法初阶(c语言)】插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序、归并排序、计数排序-全梳理(万字详解,干货满满,建议三连收藏)

目录 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3常见的排序算法 2.插入排序 2.1 原理演示:​编辑 2.2 算法实现 2.3 算法的时间复杂度和空间复杂度分析 3.希尔排序 3.1算法思想 3.2原理演示 3.3代码实现 3.4希尔算法的时间复杂度 4.冒泡排序 4.1冒泡排…

test01

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和…

Java的IDEA的工程管理

模块和包的图标: 举个例子: IDEA中创建包: 如图所示,com.LBJ的意思是在com包中创建子包LBJ 参见: IDEA中项目、模块和包的关系_idea中模块和项目-CSDN博客

网站秒收录的6个方法

网站怎么做到秒收录 网站的收录速度对于网站的曝光和流量至关重要。如果能够实现网站的秒收录,将大大提高网站的可见性和访问量。下面介绍几种方法,帮助您实现网站秒收录的目标。 1. 提交sitemap.xml文件 创建并提交sitemap.xml文件是实现网站快速收录…

Netty学习——源码篇9 Netty的Handler其他处理 备份

1 ChannelHandlerContext 每个ChannelHandler被添加到ChannelPipeline后,都会创建一个ChannelHandlerContext,并与ChannelHandler关联绑定。ChannelHandlerContext允许ChannelHandler与其他的ChannelHandler进行交互。ChannelHandlerContext不会改变添加…

U8二次开发-钉钉集成

钉钉开放平台作为企业沟通和协作的重要工具,其技术的每一次迭代都为企业带来了新的机遇和挑战。随着企业对于高效沟通和智能化管理的需求日益增长,钉钉平台的SDK更新显得尤为重要。把传统的U8与钉钉平台集成,可以有效的将业务功能和角色进行前移,打破应用系统二八原则,即8…

dailyneaty、希亦、鲸立婴儿洗衣机怎么样?三款卷王测评PK对决

曾经我还是一直选择手洗婴儿衣物,最终还是加入了买婴儿洗衣机的大军,一方面因为我懒,不想再继续手洗,另一方面是因为我看了科普才知道,当我们清洗衣物时,除了要洗掉衣物表面的污渍,更需要消除掉…

MATLAB——知识点备忘

最近在攻略ADC建模相关方面,由好多零碎的知识点,这里写个备忘录。 Matlab 判断一个数是否为整数 1. isinteger 函数 MATLAB中,可以使用 isinteger 函数来判断一个数是否为整数,例如:要判断x是否为整数可以采用以下代…

科研学习|论文解读——情感对感知偶然信息遭遇的影响研究(JASIST,2022)

原文题目 Investigating the impact of emotions on perceiving serendipitous information encountering 一、引言 serendipity一词最初是由霍勒斯沃波尔创造的,他将其定义为“通过意外和睿智发现你并不追求的事物”。信息研究中大多数现有的偶然性定义从几个角度看…

劳动力规划:对企业加速运营的未来展望

近年来,企业面临着过山车般的经济形势,面对消费水平的上涨、市场波动带来的担忧以及数字化的加速转型,许多企业虽然对未来仍秉持着谨慎乐观的态度,但也同时认为自身缺乏持续增长和成功转型的能力。为了让企业能够实现战略目标、应…

算法笔记之蓝桥杯pat系统备考(3)

算法笔记之蓝桥杯&pat系统备考(2) 多训练、多思考、多总结٩(๑•̀ω•́๑)۶ 八、深搜和广搜 8.1DFS dfs是一种枚举完所有完整路径以遍历所有情况的搜索方法,可以理解为每次都是一条路走到黑的犟种。 以老朋友斐波那契额数列为例&a…

Docker-compose管理工具的使用

华子目录 容器编排工具docker composecompose介绍compose使用的三个步骤docker-compose.yml文件案例compose具有管理应用程序整个生命周期的命令 docker compose安装安装条件在Linux系统上安装composedocker compose卸载 docker compose运用演示修改compose配置,添加…

【手册】——mq延迟队列

目录 一、背景介绍二、思路&方案三、过程1.项目为啥用延迟队列?2.项目为啥用三方延迟队列?3.项目中为啥用rabbitmq延迟队列?4.rabbitmq延迟队列的安装5.rabbitmq的延迟队列配置方式5.1.exchange配置5.2.queues配置5.3.exchange和queues的…

初识C++ · 入门(2)

目录 1 引用 1.1引用的概念 1.2 引用的特性 2 传值,传引用的效率 3 引用和指针的区别 4 内联函数 4.1 内联函数的定义 4. 2 内联函数的特性 5 关键字auto 5.1关于命名的思考 5.2 关于auto的发展 5.3 auto使用规则 6 范围for的使用 7 空指针 1 引用 …

win10如何开启麦克风权限,win10麦克风权限设置

手机下载软件后,总是会跳出各种权限需要,例如访问通讯录、读取位置信息、启动相机等等。电脑上的应用也有这些权限设置,比如说玩游戏、直播、或录制视频时,我们需要打开麦克风权限,否则无法进行交流和录音。但是,win10如何开启麦克风权限呢?针对这个问题,小编已整理了两…

《自动机理论、语言和计算导论》阅读笔记:p115-p138

《自动机理论、语言和计算导论》学习第 6 天,p115-p138 总结,总计 24 页。 一、技术总结 1.associativity and comutativity (1)commutativity(交换性): Commutativity is the property of an operator that says we can switch the order of its ope…

比KMP简单的Manacher

P3805 【模板】manacher - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) “没时间悼念KMP了,接下来上场的是Manacher!” 什么是Manacher? 历史背景: 1975 年,一个叫 Manacher 的人发明了这个算法,所以叫Manacher 算…

财务管理系统的设计与实现|Springboot+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)

本项目包含可运行源码数据库LW,文末可获取本项目的所有资料。 推荐阅读100套最新项目持续更新中..... 2024年计算机毕业论文(设计)学生选题参考合集推荐收藏(包含Springboot、jsp、ssmvue等技术项目合集) 目录 1. …