深入理解MapReduce:从Map到Reduce的工作原理解析

当谈到分布式计算和大数据处理时,MapReduce是一个经典的范例。它是一种编程模型和处理框架,用于在大规模数据集上并行运行计算任务。MapReduce包含三个主要阶段:Map、Shuffle 和 Reduce。

在这里插入图片描述

**

Map 阶段

**
Map 阶段是 MapReduce 的第一步,它负责将输入数据集分解成一系列键值对,并将这些键值对传递给各个 Mapper 函数进行处理。在 Map 阶段,用户自定义的 Map 函数会被并行应用于输入数据集中的每个元素。Map 函数的输出结果是一系列中间键值对,通常称为中间数据。

Map 阶段的工作原理可以概括为以下几个步骤:

数据分片: 输入数据集被划分成若干个大小合适的数据块,每个数据块被一个 Mapper 处理。

映射函数应用: 每个 Mapper 对数据块中的每个元素应用用户定义的映射函数。映射函数将每个输入元素转换为零个或多个中间键值对。

中间键值对生成: 映射函数的输出结果形成一系列中间键值对,其中键用于标识数据,值用于保存与键相关联的信息。

中间结果分发: 中间键值对被分发到后续的 Shuffle 阶段,以便根据键进行分组并传递给相应的 Reducer。

**

Shuffle 阶段

**
Shuffle 阶段是 MapReduce 中的一个关键步骤,它负责将 Map 阶段产生的中间键值对按键进行排序和分组,并将具有相同键的键值对传递给相同的 Reducer。Shuffle 阶段的主要任务是在不同的节点之间传输数据并进行合并操作,以便在 Reduce 阶段中能够高效地处理数据。

Shuffle 阶段的工作原理包括以下几个步骤:

分区: 根据中间键值对的键,对数据进行分区,将具有相同键的数据路由到同一个 Reducer。

排序: 在每个分区内部,对键值对按键进行排序,以便相同键的数据能够被紧密地聚集在一起。

合并: 对具有相同键的数据进行合并操作,以减少数据传输量和提高数据处理效率。

传输: 将分区后的数据传输给相应的 Reducer 节点,以便进行后续的 Reduce 操作。

**

Reduce 阶段

**
Reduce 阶段是 MapReduce 的最后一步,它负责将 Shuffle 阶段产生的分区数据集合并,并将具有相同键的键值对传递给用户定义的 Reduce 函数进行处理。Reduce 函数的输出结果是最终的计算结果。

Reduce 阶段的工作原理包括以下几个步骤:

数据传输: 接收到来自 Shuffle 阶段的分区数据。

合并: 将具有相同键的键值对合并为一个键值对列表,以便后续的处理。

Reduce 函数应用: 对每个键值对列表应用用户定义的 Reduce 函数,生成最终的计算结果。

结果输出: 将 Reduce 函数的输出结果写入到最终的输出数据存储中,完成整个 MapReduce 任务。

**

怎么理解MapReduce中的稳定存储到稳定存储的非循环数据流?

**

稳定存储到稳定存储的非循环数据流是指在分布式计算框架(比如MapReduce)中,数据在不同阶段之间的流动过程。在这种数据流模式下,数据从一个稳定的存储介质(例如磁盘)被读取,经过处理后再被写入到另一个稳定的存储介质中,而且数据的流动不会形成循环。

具体来说,在MapReduce中,这种数据流模式通常指的是数据在Map阶段的处理后,将中间结果写入到稳定的分布式文件系统(如HDFS),然后经过Shuffle和Reduce阶段的处理,最终的结果也会被写入到同样的稳定存储介质中。这里的稳定存储指的是持久性的、可靠的存储系统,例如分布式文件系统、数据库等。

非循环的含义是数据在处理过程中不会形成循环流动的情况,也就是说,数据流动的路径是单向的,没有反复读取和写入同一份数据的过程。这种模式的设计可以降低数据处理过程中的复杂性,提高系统的可靠性和性能。

在这里插入图片描述
非循环数据流的优势
采用从稳定存储到稳定存储的非循环数据流模式具有以下几个优势:

  1. 数据可靠性: 数据在整个作业过程中都被存储在稳定的存储介质中,减少了数据丢失的风险。
  2. 性能优化:
    通过将中间数据存储在稳定存储中,可以减少数据在节点之间的传输量,提高作业的处理性能。
  3. 作业容错:
    在作业执行过程中,稳定存储可以帮助保持作业的状态,从而提高作业的容错能力。

**

了解MapReduce成本高昂的工作原理:磁盘与HDFS的不可或缺

**

在分布式计算中,MapReduce作为一种经典的并行计算框架,其设计初衷是为了能够有效地处理大规模数据集。然而,随着数据量的不断增加和任务的复杂性,MapReduce的成本问题也日益凸显。其中,成本高昂的一大原因是其常规实现方式总是倾向于频繁使用磁盘和HDFS(分布式文件系统),导致速度变慢。
在这里插入图片描述

磁盘和HDFS的使用导致成本上升

  1. 频繁的磁盘读写操作:MapReduce的默认实现中,中间结果通常会被写入磁盘,以保证数据的持久性。然而,频繁的磁盘读写操作会导致IO开销增加,从而影响作业的整体性能。
  2. 数据的大规模传输:在Shuffle阶段,中间数据需要从Mapper传输到Reducer,而通常这些数据会存储在HDFS中。由于数据量庞大,需要进行大规模的数据传输,这也会增加网络带宽的压力,导致作业的执行速度变慢。

解决方案建议:优化数据处理与存储

  1. 内存计算:尽可能地减少对磁盘的依赖,采用内存计算的方式来提高数据处理速度。例如,可以将中间结果存储在内存中而不是写入磁盘,以减少IO开销。
  2. 增加节点和资源:通过增加集群节点和资源来提高作业的并行度,从而缩短作业的执行时间。这样可以分散数据处理的压力,加快数据的处理速度。
  3. 数据压缩和合并:在数据传输过程中,采用数据压缩和合并等技术来减少数据传输量,降低网络带宽的压力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/784654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信开发者工具创建一个小程序

创建项目 对于上面这个AppID可以自行选择是注册还是测试号,我是使用的测试号,之后再下面选择模板,我这里选择了JS-基础模板。 进入项目后在模拟器中可看到如下页面: 添加提交按钮进行页面跳转 添加需要跳转的文件夹,…

Node.js------模块化

◆ 能够说出模块化的好处◆ 能够知道 CommonJS 规定了哪些内容◆ 能够说出 Node.js 中模块的三大分类各自是什么◆ 能够使用 npm 管理包◆ 能够了解什么是规范的包结构◆ 能够了解模块的加载机制 一.模块化的基本概念 1.模块化 模块化是指解决一个复杂问题时&#xff0c…

Express

可以方便、快速创建Web网站的服务器(提供web网页资源)或API接口服务器(提供API接口) app.get(请求URL,function(req,res)>{}) //req:请求对象(包括请求属性和方法) //res:响应对象&#xff…

Go 源码之 gin 框架

Go 源码之 gin 框架 go源码之gin - Jxy 博客 一、总结 gin.New()初始化一个实例:gin.engine,该实例实现了http.Handler接口。实现了ServeHTTP方法 注册路由、注册中间件,调用addRoute将路由和中间件注册到 methodTree 前缀树(节…

HashSet解析

文章目录 集合简介对HashSet进行遍历迭代器增强forLambda表达式 Hash底层原理 集合简介 HashSet是Set集合下的子接口,set集合添加的元素是无索引,不重复,无序,与List系列集合正好相反。 无序:存储顺序不一致。 不重复…

全新的分布式锁,几行代码搞定,简单且强大

# 前言 分布式锁是分布式系统中一个极为重要的工具。目前有多种分布式锁的设计方案,比如借助 redis,mq,数据库,zookeeper 等第三方服务系统来设计分布式锁。tldb 提供的分布式锁,主要是要简化这个设计的过程&#xff0…

数据挖掘入门项目二手交易车价格预测之特征工程

文章目录 目标常见的特征工程具体步骤1. 导入数据2. 删除异常值3. 特征构造3.1 为树模型构造特征3.2 为LR NN 之类的模型构造特征 4. 特征筛选过滤式包裹式嵌入式 5. 总结 本文数据集来自阿里天池:https://tianchi.aliyun.com/competition/entrance/231784/informat…

初始Java篇(JavaSE基础语法)(5)(类和对象(下))

个人主页(找往期文章包括但不限于本期文章中不懂的知识点):我要学编程(ಥ_ಥ)-CSDN博客 目录 封装 访问限定符 封装扩展之包 自定义包 static成员 static修饰成员变量 static修饰成员方法 static成员变量初始化 内部类 对象的打…

Adaboost集成学习 | Matlab实现基于SVM-Adaboost支持向量机结合Adaboost集成学习时间序列预测(股票价格预测)

目录 效果一览基本介绍模型设计程序设计参考资料效果一览 基本介绍 Adaboost集成学习 | 基于SVM-Adaboost支持向量机结合Adaboost集成学习时间序列预测(股票价格预测)基于SVM(支持向量机)和AdaBoost集成学习的时间序列预测(如股票价格预测)是一种结合了两种强大机器学习算…

《极客时间TonyBai go语言第一课》学习笔记

文章目录 前置篇显式组合并发 入门篇大纲 前置篇 显式 在 C 语言中&#xff0c;下面这段代码可以正常编译并输出正确结果&#xff1a; #include <stdio.h> int main() { short int a 5; int b 8; long c 0; c a b; printf("%ld\n", c); }我们看到在上面…

Windows 电脑麦克风 自动启用/禁用 小玩具!

WinMicrophone Windows 系统的 麦克风设备&#xff08;启用/禁用&#xff09;切换驱动&#xff01;它是小巧且快速的&#xff0c;它能够自动的检测并切换麦克风的情况。 您可以在软件包仓库中找到发布版本的exe包&#xff0c;无需安装&#xff01;其能够大大增大您在Windows中…

【网站项目】面向社区健康服务的医疗平台

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

【MATLAB源码-第25期】基于matlab的8QAM调制解调仿真,手动实现未调用内置函数,星座图展示。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 8QAM调制&#xff08;8 Quadrature Amplitude Modulation&#xff09;是一种数字调制技术&#xff0c;它可以在有限带宽内传输更多的信息比特。在8QAM调制中&#xff0c;每个符号可以携带3个比特的信息。QAM调制是将数字信号…

插入排序---算法

1、算法概念 插入排序&#xff1a;它的工作原理是通过构建有序排序&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置插入。 2、算法步骤 将第一待排序序列第一个元素看作一个有序序列&#xff0c;把第二个元素到最后一个元素当成是…

内容营销新手指南:Kompas.ai的智能起步策略

内容营销是当今企业获取客户、建立品牌认知和忠诚度的关键手段。然而&#xff0c;对于刚刚踏入这一领域的新手来说&#xff0c;内容营销的世界可能会显得既广阔又复杂。从内容创作到发布&#xff0c;再到分析和优化&#xff0c;每一步都充满了挑战。本文旨在为内容营销新手提供…

数据资产如何入表?有哪些步骤?

当下&#xff0c;数据资产入表这一关键环节对于企业的高效运营与决策制定具有至关重要的作用。软信天成团队经过长期研究与实践&#xff0c;将数据资产入表的全流程归纳总结为四个核心步骤&#xff0c;以期为诸位提供帮忙。 &#xff08;一&#xff09;确保数据合规&#xff0…

jvm(HotSpotVM)学习记录

1&#xff1a;当我们写的java文件经过编译器编译后生成class文件。class文件里面包含了各种java语言规范的特定语法。可以通过javap -v -private xxx.class 例如&#xff1a; javap -v -private Gas.class Classfile /D:/project/ike-springboot-carbonzero-v2/springboot-bms…

前端三剑客 —— CSS (第二节)

目录 内容回顾&#xff1a; CSS选择器*** 属性选择器 伪类选择器 1&#xff09;:link 超链接点击之前 2&#xff09;:visited 超链接点击之后 3&#xff09;:hover 鼠标悬停在某个标签上时 4&#xff09;:active 鼠标点击某个标签时&#xff0c;但没有松开 5&#xff09;:fo…

LabVIEW动车组谐波分析与检测系统

LabVIEW动车组谐波分析与检测系统 随着中国高速铁路网络的快速发展&#xff0c;动车组数量和运行速度的不断提升&#xff0c;其产生的谐波问题对电网产生了不小的影响。基于图形化编程语言LabVIEW&#xff0c;开发了一套动车组谐波分析与检测系统&#xff0c;旨在实时监控与分…

机器视觉/将HIK海康面阵相机连接Halcon软件

文章目录 概述工业相机客户端动态库拷贝Halcon连接HIK相机的配置相机参数其他 概述 本文简述了如何将海康面阵相机连接到Halcon软件中进行实时取图的过程。 补充&#xff0c; 整个实践过程使用 17.12 / x64-win64 Halcon 软件版本 海康 MV-CE200-10GM 面阵相机。从左到右简解…