3. WiFi基本原理

1. WiFi简介

WiFi的全称是Wireless Fidelity。它是一种无线网络通信技术,由Wi-Fi联盟拥有,目的是改善基于IEEE 802.11标准的无线网络产品之间的互通性,允许电子设备在没有物理连接的情况下进行高速数据传输。此外,WiFi也被视为IEEE 802.11标准的同义词。

802.是网络协议。具体来说,802.是国际电工电子工程师学会(IEEE)制定的局域网和城域网标准的一部分。这些标准涵盖了一系列的无线和有线技术,包括以太网、令牌环、无线局域网等。每个标准都有一个特定的编号,例如802.11代表无线局域网,802.3代表以太网等。

此外,还有一些其他的802.标准,比如802.1x是基于端口的访问控制协议,主要用于解决无线局域网用户的接入认证问题;802.1d是生成树协议,用于防止网络环路的产生;802.1q是虚拟局域网(VLAN)协议,用于划分和管理网络。
总的来说,802.标准是网络协议的重要组成部分,它们定义了如何在网络中传输数据,从而确保了网络的正常运行。

2. 发展历史

802.11协议是由国际电工电子工程师学会(IEEE)制定的无线局域网(WLAN)标准。自1997年以来,这个标准已经经历了多次升级和改进,以提高速度、增加容量和改善性能。以下是802.11协议的主要版本和发展历程:

1997年:802.11
这是最初的802.11协议,它在2.4GHz频段工作,最高速率可达2Mbps。这个版本主要用于解决办公室局域网和校园网中用户与用户终端的无线接入,业务主要限于数据存取。

1999年:802.11b
802.11b协议在802.11的基础上提出了“High Rate”的概念,通过调试模式CCK,将WLAN的最大物理接入速率从2Mbps直接提升到11Mbps。在 2.4GHz频段工作。802.11b是所有无线局域网标准中最著名,也是普及最广的标准。

1999年:802.11a
802.11a协议工作在5GHz频段,通过OFDM调制模式将物理速率提升到了54Mbps。这为WLAN应用争取了更多的空间媒介资源,并且可以提供多达13个不重叠的工作信道。

由于当时使用的是5GHz频段,技术比较超前,没有流行起来。

2003年:802.11g
802.11g协议在802.11b的基础上扩充支持了OFDM调制模式,使得WLAN在2.4GHz上也能够实现54Mbps的物理传输速率。使用 DSSS 和 CCK 向下兼容 802.11b

2009年:802.11n
802.11n协议采用 单用户 多输入多输出(SU MIMO) 和频道绑定(CB)的 正交频分复用(OFDM) 技术,实现了2个信道的捆绑使用,甚至对信号间隔调整,将WLAN的物理传输速率推到了300Mbps,特别在3条流的基础上可以达到450Mbps的物理速率。2.4 或 5 GHz频段
在这里插入图片描述

2013年:802.11ac
802.11ac(也被称为Wi-Fi 5)协议工作在5GHz频段,最高速率可达1300Mbps。
从这里开始,WiFi开始有别称 Wi-Fi 5,顺理成章的,以前的WiFi就叫 Wi-Fi 1,Wi-Fi 2,Wi-Fi 3,Wi-Fi 4。在这之前都是大家都按协议名称802.xx划分。

802.11ac wave1
2014 年 1 月发布。

  • 单用户 多输入多输出(SU MIMO)

  • 数据速率变化的调制类型和数量的空间流;200 Mbps、400 Mbps、433 Mbps、600 Mbps、867 Mbps。

在这里插入图片描述

802.11ac wave2
2016 年 6 月发布。
Wi-Fi 客户端的主要新功能:

  • 多用户 MIMO (MU MIMO),仅支持下行链路,最多4用户
  • 空间流增加到8
  • 更高阶的调制方式:256QAM
  • 160 Mhz 信道
  • OFDM
    在这里插入图片描述

2019年:802.11ax
802.11ax协议(也被称为Wi-Fi 6)进一步提高了速度和效率,特别是在拥挤的环境中。它的最大速率可达 9.6Gbps。

  • 多用户 MIMO (MU MIMO),支持 上,下行链路。最多8个用户
  • 2.4 或 5 GHz频段
  • 1024 QAM
  • OFMDA
    在这里插入图片描述

2020年:802.11be
802.11be协议(也被称为Wi-Fi 7)预计最大速率可达30Gbps。

以上就是802.11协议的主要版本和发展历程。随着技术的不断进步,我们可以期待未来会有更多版本的802.11协议出现,以满足我们对无线网络速度和性能的需求。
IEEE 802.11 Wi-Fi 协议摘要
在这里插入图片描述
在这里插入图片描述

3. 多址接入技术

  1. 第一代移动通信系统(1G)使用的是频分多址接入(FDMA)技术。FDMA通过将可用频率范围划分为多个频道,每个频道分配给不同的用户,从而允许多个用户同时通信。每个频道的带宽是固定的,用户在通话期间独占使用分配给他们的频道。
  2. 第二代移动通信系统(2G)主要采用时分多址接入(TDMA)技术。TDMA将时间分割成多个时隙,并将这些时隙分配给不同的用户。在一个给定的频率上,用户轮流使用这些时隙进行通信。这样可以提高频谱的利用效率,因为同一频率在不同的时间被不同的用户使用。
  1. 第三代移动通信系统(3G)使用的是码分多址接入(CDMA)技术。CDMA为每个用户分配一个唯一的码序列,用户的数据与此码序列进行乘积运算后在同一频率上传送。由于每个用户的码序列是正交的,所以多个用户可以在相同的频率上同时传输,接收端通过解码器区分出每个用户的信号。
  2. 第四代通信系统(4G)采用的是正交频分复用多址接入 (OFDMA) 技术。OFDMA将频带划分为许多小的子载波,每个子载波可以独立进行调制和传输。用户根据其数据需求被分配到一个或多个子载波上。OFDMA允许多个用户共享同一频段资源,提高了频谱利用率和系统容量。
  3. 第五代移动通信系统(5G)引入了非正交多址接入(NOMA)技术作为一种新兴的多址方式。NOMA允许多个用户共享同一时间和频率资源,通过功率域多址(PDMA)或码间干扰管理等技术区分不同用户的信号。这种方法进一步提高了频谱效率和系统容量,支持更密集的用户部署和更高的数据速率。

4. 奈奎斯特准则

是1924年奈奎斯特推导出的准则,是指在理想低通(无噪声,带宽受限)条件 下,为了避免码间串扰,码元的传输速率的上限值。
码间串扰: 接收端收到的信号波形 失去了码元之间清晰界限的现象。
极限信息传输速率(信道容量) C m a x = 2 W log ⁡ 2 V (1) 极限信息传输速率(信道容量) C_{max} = 2W \log_2 V \tag1 极限信息传输速率(信道容量)Cmax=2Wlog2V(1)

w h e r e , W , 是带宽,这里单位是 H Z ; V 是 Q A M 调制码元数 . where,\\ W ,是带宽,这里单位是 HZ; \\ V是QAM调制码元数. where,W,是带宽,这里单位是HZ;VQAM调制码元数.

基于奈氏准则可以推导出以下四个结论:
(1) 在任何信道中,码元传输的速率是有上限的。若传输速率超过次上限,就会出现严重的码间串扰问题,使得接收端对于码元的完全正确识别成为不可能;
(2) 信道的频带越宽(即能通过的信号高频分量越多),就可以用更高的速率进行码元的有效传输;
(3) 奈氏准则给出了码元传输速率的限制,但并没有对信息传输速率给出限制;
(4) 由于码元的传输速率收到奈氏准则的制约,所以要提高数据的传输速率,就必须设法使每一个码元能携带更多个比特的信息量,这就需要采用多元制的调制方法。

5.香农定理

噪声: 存在于所有的电子设备和通信信道中。由于噪声随机产生,它的瞬时值有时会很大,因此噪声会使接收端对码元的判决产生错误。但是噪声的影响是相对的,若信号较强,那么噪声的影响相对较小。因此,信噪比就很重要。

信噪比: 信号的平均功率 / / / 噪声的平均功率,常记为 S / N S/N S/N,并用分贝 d B dB dB作为度量单位,即
信噪比 ( d B ) = 10 log ⁡ 10 ( S N ) (2) 信 噪 比 ( d B ) = 10 \log_{10} (\frac {S}{N} ) \tag2 信噪比(dB)=10log10(NS)(2)

香农定理: 在带宽受限且有噪声的信道中,为了不产生误差,信息的数据信息传输速率有上限值。
信道的极限数据传输速率 C = B log ⁡ 2 ( 1 + S N ) ( b / s ) (3) 信 道 的 极 限 数 据 传 输 速 率 C = B\log_{2}( 1 + \frac {S}{N} ) ~( b/s) \tag3 信道的极限数据传输速率C=Blog2(1+NS) (b/s)(3)
等价于
C = B log ⁡ 2 ( 1 + S n 0 B ) ( b / s ) (4) C = B\log_{2}( 1 + \frac {S}{n_0B} ) ~( b/s) \tag4 C=Blog2(1+n0BS) (b/s)(4)
w h e r e , B 是带宽 ( H z ) ; S 信道内所传信号的平均功率 W ; N 为信道内部的高斯白噪声功率 W ; n 0 噪声单边功率谱密度 , W / H z ; N = n 0 ∗ B ; S / N 是信噪比。 where,\\ B是带宽(Hz);\\ S信道内所传信号的平均功率 W;\\ N为信道内部的高斯白噪声功率W;\\ n_0 噪声单边功率谱密度, W/Hz;\\ N =n_0*B;\\ S/N是信噪比。 whereB是带宽(Hz)S信道内所传信号的平均功率WN为信道内部的高斯白噪声功率Wn0噪声单边功率谱密度,W/Hz;N=n0B;S/N是信噪比。

基于香农定理可以推导出以下5个推论:
(1) 信道的带宽或者信道中的信噪比越大,则信息的极限传输速率就越高;
(2) 对一定的传输带宽和一定的信噪比,信息传输速率的上限就确定了;
(3) 只要信息的传输速率低于信道的极限传输速率,就一定能找到某种方法来实现无差错传输;
(4) 香农定理得出的为极限信息传输速率,实际信道能达到的传输速率要比它低不少;
(5) 从香农定理可以看出,若信道的带宽 W W W或者信噪比 S / N S/N S/N没有上限(不可能),那么信道的极限传输速率就没有上限。

6. 奈氏准则和香农定理

奈氏准则:内忧
带宽受限,无噪声条件下,为了避免码间串扰,码元传输速率的上限 2 W B a u d 2W Baud 2WBaud
理想低通信道下的极限数据传输率= 2 W log ⁡ 2 V 2W\log_2V 2Wlog2V,要想提高数据率,就要提高带宽或者采用更好的编码技术。
香农定理: 外患
带宽受限有噪声条件下的信息传输速率。
信道的极限数据传输速率 C = W log ⁡ 2 ( 1 + S N ) C=W\log_2(1+\frac{S}{N}) C=Wlog2(1+NS) 要想提高数据率,就要提高带宽或者信噪比:

在实际应用中,应该取奈氏准则和香农定理二者求得值的最小值 作为信道的极限数据传输速率。

题目:二进制信号在信噪比为12的5kHz信道上传输,最大的数据速率可达到多少?
Nice: 2 ∗ 5000 ∗ log ⁡ 2 2 = 10 K b / s 2*5000*\log_2 2=10 Kb/s 25000log22=10Kb/s
香浓: 5000 ∗ log ⁡ 2 ( 1 + 12 ) = 18.5 K b / s 5000 * \log_2(1+12)=18.5Kb/s 5000log2(1+12)=18.5Kb/s

7.频谱

在这里插入图片描述

7.1 2.4G WiFi 频段

  • 一般说的2.4GHZ信号,并不是一个固定的值,而是一个范围。中心频率范围:2.412GHz-2.454GHz,共83.5M带宽;
  • 在该频率中间又共划分14个信道,中国可用13个信道(1-13),美国可用11个信道(1-11),各个国家出于安全等等各方面考虑,开放的信道并不一致。要参考国家码和信道协商表;
  • 相邻信道中心频点间隔5MHz,相邻的多个信道存在频率重叠,相互不干扰的信道有三组(1、6、11或2、7、12或3、8、13);
  • 信道有效带宽20MHz,实际带宽22MHz,其中2MHz为隔离频带。

在这里插入图片描述

通过上图我们可以看到,2.4GHZ信号相邻信道是相互重叠的,因此产生干扰。除了无线路由器,还有蓝牙,无线键鼠(蓝牙传输)等也是使用的2.4GHZ频率,我们可以看出,2.4GHZ频段的干扰无处不在。

7.2 5G WiFi 频段

频率范围在 5150MHz - 5825MHz,俗称5G Wi-Fi频段,这个频段里面一共有201个信道,但是,能够被Wi-Fi协议所用的信道却很少。原因是5G的频率很特殊,甚至有关国家安全,因为5G wifi的频率与军用雷达频段重合,因此,很多国家基于国家安全考虑,对5G频段持保留态度。

  • 相邻信道中心频点间隔还是5MHz
  • 在中国,只有36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165这13个信道可以供5G的wifi网络使用。
    在这里插入图片描述

7.3 为什么业内都要用1、6、11这种组合?

我们知道2.4G有效带宽是20MHz,那就要知道有效信道。所谓有效信道是工作时,互不干扰的有效带宽所对应的的中心频率,从上图可以看出,有效信道的组合也就3种。
那么,为什么业内都要有用1、6、11这种组合呢,为啥不用其他两种组合,这里,又要涉及到一个小知识点,中国支持1-13个信道,那么,中国之外呢?欧洲支持1-13信道,美国支持1-11信道,日本支持1-14信道,总的来看,子集是1-11信 道。因此,把设备的自动信道设为1-6-11这三个信道,是即安全,又普遍且皆大欢喜的作法。

因此 信道设为1、6、11由有效信道而来,并且,从各个国家的法规出发,选择1、6、11最稳妥。

8.自由空间路径损耗 PathLoss

自由空间路径损耗(FSPL)公式表示为:

L 0 = 32.45 + 20 l g F ( M H z ) + 20 l g D ( k m ) , (5) L_0=32.45+20lgF(MHz)+20lgD(km),\tag5 L0=32.45+20lgF(MHz)+20lgD(km)(5)
或者等价地表示为
L 0 = 20 l g ( F ) + 20 l g ( D ) + 32.45. (6) L_0=20lg(F)+20lg(D)+32.45 \tag6. L0=20lg(F)+20lg(D)+32.45.(6)

在这个公式中,L_0表示自由空间的损耗(以分贝dB为单位),F无线电波的频率(以兆赫兹MHz为单位),而D是发射器和接收天线之间的距离(以公里为单位)。

这个方程是基于自由空间传播模型的,假设没有障碍物和干扰的情况下,无线信号将以球面波的形式传播。根据能量守恒定律,信号的能量将随着距离的增加而衰减。FSPL公式通过将传播路径上的损耗因素进行叠加计算,得到了信号在传输过程中的衰减程度。

那么对于 2.4GHz ,其 L 0 = 100 + 20 l g ( D ) , L_0 = 100 + 20lg(D), L0=100+20lg(D), 对于5.8GHz ,其 L 0 = 108 + 20 l g ( D ) , L_0 = 108 + 20lg(D), L0=108+20lg(D),所以,同样的距离,5G损耗比2.4G大。

9.信号接收强度 RSSI

信号接收强度,也称为接收信号强度指示 Received signal strength indicato(RSSI),是无线网络中用来表示接收到的信号强度的一种指标, 用于度量接收到的无线电信号功率。

在 IEEE 802.11 系统中,RSSI 用于表示无线环境中的相对接收信号强度,单位不限。RSSI 用于描述在除去天线和线缆损失后接收到的无线电功率。RSSI 值越大表示信号越强。当 RSSI 表示为负数时(比如 -100 ),数字约接近 0 则信号越强。

并没有任何标准规定 RSSI 值需要和某个特定的物理参数相关联 。
802.11 标准没有规定任何 RSSI 值和毫瓦功率、毫瓦基准分贝数(dBm)的关系。各路厂商都各自规定了自己的精度、粒度、实际功率范围(以毫瓦或分贝计量)和 RSSI 值范围。
802.11 RSSI metric 只规定了该如何对该值进行采样 。 RSSI 是在接收到 802.11 帧的初始阶段获取的,而不是在整个帧处理完后才确定的。

接收信号强度(RSSI)是无线网络中用来表示接收到的信号强度的一种指标。在不考虑干扰、线路损耗等因素时,接收信号强度的计算公式为:

接收信号强度 = 射频发射功率 + 发射端天线增益 + 接收端天线增益 – 路径损耗
R S S I = P t + G t + G r − L 0 (7) RSSI = Pt + Gt + Gr - L_0 \tag7 RSSI=Pt+Gt+GrL0(7)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/784478.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Holiday Notice

Holiday Notice 放假通知 要是每个公司都能放假放的多,把加班折算放假落实到位,还怕我们不努力干活,巴不得把全年都干完了,然后休息。

python爬取B站视频

参考:https://cloud.tencent.com/developer/article/1768680 参考的代码有点问题,请求头需要修改,上代码: import requests import re # 正则表达式 import pprint import json from moviepy.editor import AudioFileClip, Vid…

区间预测 | Matlab实现带有置信区间的GRNN广义回归神经网络时间序列未来趋势预测

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 Matlab实现带有置信区间的GRNN广义回归神经网络时间序列未来趋势预测 带有置信区间的GRNN(广义回归神经网络)时间序列未来趋势预测结合了广义回归神经网络(GRNN)的预测能力和置信区间的统计度量,以提供对未来…

云备份项目认识、环境搭建以及所使用的库的介绍

一、云备份认识 将本地计算机一个受监管的文件夹的文件上传到服务器中,有服务器组织,客户端可以通过网页将文件查看并且下载下来,下载过程支持断点续传功能,并且服务器会对上传的文件进行热点管理,长时间没人访问的文…

内网穿透时报错【Bad Request This combination of host and port requires TLS.】的原因

目录 前言:介绍一下内网穿透 1.内网直接https访问(可以正常访问) 程序配置的证书 2.内网穿透后,通过外网访问 3.原因 4.内网非https的Web应用,使用https后,也变成了https访问 5.题外话 感觉自己的web应用配置了…

使用 Seq2Seq 模型进行文本摘要

目录 引言 1 导入数据集 2 清洗数据集 3 确定允许的最大序列长度 4 选择合理的文本和摘要 5 对文本进行标记 6 删除空文本和摘要 7 构建模型 7.1 编码器 7.2 解码器 8 训练模型 9 测试模型 10 注意 11 整体代码 引言 文本摘要是指在捕捉其本质的同时缩短长文本的…

分布式之分布式事务详解

分布式事务与实战运用 什么是分布式事务? 业务场景:用户A转账100元给用户B,这个业务比较简单,具体的步骤: 1、用户A的账户先扣除100元 2、再把用户B的账户加100元 如果在同一个数据库中进行,事务可以保证…

209基于matlab的无人机路径规划

基于matlab的无人机路径规划,包括2D路径和3D路径,三种优化算法,分别是蝙蝠算法(BA)、蝙蝠算法融合差分进化算法(DEBA)、结合人工势场方法的改进混沌蝙蝠算法(CPFIBA)。输出距离迭代曲线和规划的路径。程序已调通&#…

云计算探索-如何在服务器上配置RAID(附模拟器)

一,引言 RAID(Redundant Array of Independent Disks)是一种将多个物理硬盘组合成一个逻辑单元的技术,旨在提升数据存取速度、增大存储容量以及提高数据可靠性。在服务器环境中配置RAID尤其重要,它不仅能够应对高并发访…

【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍

系列文章目录 【跟小嘉学 Linux 系统架构与开发】一、学习环境的准备与Linux系统介绍 【跟小嘉学 Linux 系统架构与开发】二、Linux发型版介绍与基础常用命令介绍 文章目录 系列文章目录[TOC](文章目录) 前言一、 Linux 发行版(Linux distribution)介绍二、Centos 虚拟机初始化…

Yarn的安装和使用(2):使用及问题解决

Yarn是JavaScript的依赖管理工具,它与npm类似,但提供了一些额外的性能优化和一致性保证。 Yarn的使用: 初始化项目: yarn init 此命令会引导您创建一个新的package.json文件,用于记录项目的元信息和依赖。 添加依赖&…

【Linux在程序运行时打印调用栈信息(函数名,文件行号等)】

在程序运行时打印相关调用栈信息&#xff08;函数名&#xff0c;文件行号等&#xff09;,便于梳理调用逻辑等 //stack.c #include <stdio.h> #include <execinfo.h> #include <stdlib.h> #include <string.h> #include <stdbool.h>#define MAX_…

如何通过Elasticsearch实现搜索的关键词达到高亮的效果

高亮 首先介绍一下什么是搜索的关键词达到高亮的效果&#xff0c;如图所示 当在百度里面搜索elasticsearch的时候&#xff0c;可以看到出现的搜索结果里面elasticsearch这个关键词明显与其他的条文不一样&#xff0c;用红颜色凸显了“高亮效果”。当我们想要在自己的项目里面…

手机有线投屏到直播姬pc端教程

1 打开哔哩哔哩直播姬客户端并登录(按下图进行操作) 2 手机用usb数据线连接电脑(若跳出安装驱动的弹窗点击确定或允许),usb的连接方式为仅充电(手机差异要求为仅充电),不同品牌手机要求可能不一样,根据实际的来 3 在投屏过程中不要更改usb的连接方式(不然电脑会死机需要重启) …

MultiPath HTTP:北大与华为合作部署FLEETY

当前的终端基本都能支持蜂窝网络和wifi网络&#xff0c;然而&#xff0c;不同的网络通路都不可避免的会出现信号不好或者其他因素引起的通路性能(吞吐量、时延等)下降。为了能够提升终端业务体验&#xff0c;很多不同的MultiPath方案被提出&#xff0c;其中&#xff0c;包括应用…

使用Detours进行HOOK

文章目录 Detours介绍Detours配置Detours进行Sleep Hook Detours介绍 Detours是微软研究院开发的一款软件工具&#xff0c;用于Windows平台上的应用程序重定向和修改。 它可以在运行时修改应用程序的执行路径&#xff0c;允许开发人员注入自定义代码来改变应用程序的 行为&…

vulhub中Apache Solr 远程命令执行漏洞复现(CVE-2017-12629)

Apache Solr 是一个开源的搜索服务器。Solr 使用 Java 语言开发&#xff0c;主要基于 HTTP 和 Apache Lucene 实现。原理大致是文档通过Http利用XML加到一个搜索集合中。查询该集合也是通过 http收到一个XML/JSON响应来实现。此次7.1.0之前版本总共爆出两个漏洞&#xff1a;[XM…

[Flutter]打包IPA

1.直接使用Xcode运行iOS工程 不用flutter构建&#xff0c;在Xcode中是可以独立进行构建运行和打包发布的。 1).运行项目 先将flutter的build清理 $ flutter clean $ flutter pub get 然后立即用XCode打开iOS工程运行 运行会报错&#xff1a; error: The sandbox is not …

C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测 目录 C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测效果一览基本介绍模型描述程序…

Vue.js基础指令

&#xff08;在讲指令之前&#xff0c;可以先了解插值表达式&#xff0c;如果已经知道&#xff0c;当我没说&#xff09; 一.插值表达式 1.数据绑定最常见的形式就是双大括号的文本插值&#xff0c;Mustache上属性的值替代。只要绑定的数据对象上属性发生了改变&#xff0c;插…