浅读 Natural Language Generation Model for Mammography Reports Simulation

浅读 Natural Language Generation Model for Mammography Reports Simulation

这是一篇报告生成 去伪 的文章,重点看生成报告的 真实性

Abstract

Extending the size of labeled corpora of medical reports is a major step towards a successful training of machine learning algorithms. Simulating new text reports is a key solution for reports augmentation, which extends the cohort size. However, text generation in the medical domain is challenging because it needs to preserve both content and style that are typical for real reports, without risking the patients’ privacy. In this paper, we present a conditioned LSTM-RNN architecture for simulating realistic mammography reports. We evaluated the performance by analyzing the characteristics of the simulated reports and classifying them into benign and malignant classes. An average classification AUC was calculated over two distinct test sets. A qualitative analysis was also performed in which a masked radiologist classified 0.75 of the simulated reports as real reports, showing that both the style and content of the simulated reports were similar to real reports. Finally, we compared our RNN-LSTM generative
model with Markov Random Fields. The RNN-LSTM provided significantly better and more stable performance than MRFs (p < 0.01, Wilcoxon).

在这里插入图片描述

我主要觉得这篇文章的评估有些价值

在这里插入图片描述
由于自回归模型的训练模式,导致很容易导致模式一样,但是对于病情的掌握并不准确,所以,这个 words in sentence, words in a report 这样的评估指标就显得非常实际,非常有价值。

指标
  1. words in sentence
  1. words in a report

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/783537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手搓 Docker Image Creator(DIC)工具(02):预备知识

此节主要简单介绍一下 Docker、Dockerfile 的基本概念&#xff0c;Dockerfile 对的基本语法&#xff0c;Windows 和 macOS 下 Docker 桌面的安装&#xff0c;Docker 镜像的创建和运行测试等。 1 关于 Docker Docker 是一个开源的应用容器引擎&#xff0c;它允许开发者打包应用…

【Effective Web】文件上传

文章目录 前言一、选择本地文件1.设计一个上传文件按钮2.FileReader读取文件内容 二、使用拖拽方式1.设计一个拖拽容器2.拖拽文件的相关事件回调 三、使用粘贴方式1.设计一个粘贴容器2.paste事件回调 四、总结 前言 前端无法像app一样直接操作本地文件&#xff0c;对本地文件的…

MTMT:构建比特币生态平行世界 打造铭文生态繁荣

近年来&#xff0c;随着铭文市场的火爆以及比特币ETF成功通过&#xff0c;比特币生态正经历着一场复兴&#xff0c;尤其是铭文市场作为新一代Web3的叙事&#xff0c;带来了全新的生产方式&#xff0c;可以预见&#xff0c;铭文就像流动性挖矿对于上一轮DeFi Summer的推动一样会…

vue watch 深度监听

vue2文档&#xff1a;API — Vue.js vue3文档&#xff1a;侦听器 | Vue.js watch 可以用来监听页面中的数据&#xff0c;但如果监听的源是对象或数组&#xff0c;则使用深度监听&#xff0c;强制深度遍历源&#xff0c;以便在深度变更时触发回调。 一&#xff0c;监听 <t…

蓝桥杯算法题-正则问题

问题描述 考虑一种简单的正则表达式&#xff1a; 只由 x ( ) | 组成的正则表达式。 小明想求出这个正则表达式能接受的最长字符串的长度。 例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是&#xff1a; xxxxxx&#xff0c;长度是 6。 输入格式 一个由 x()| 组成的正则表达式。…

ViveNAS性能调试笔记(一)

ViveNAS是一个开源的NAS文件服务软件&#xff0c;有一套独立自创的架构&#xff0c;ViveNAS希望能做到下面的目标&#xff1a; - 能支持混合使用高性能的介质(NVMe SSD)和低性能介质&#xff08;HDD&#xff0c;甚至磁带&#xff09;。做到性能、成本动态均衡。因此ViveNAS使用…

python 进程、线程、协程基本使用

1、进程、线程以及协程【1】进程概念【2】线程的概念线程的生命周期进程与线程的区别 【3】协程(Coroutines) 2、多线程实现【1】threading模块【2】互斥锁【3】线程池【4】线程应用 3、多进程实现4、协程实现【1】yield与协程【2】asyncio模块【3】3.8版本【4】aiohttp 1. 并发…

网络基础(二)——序列化与反序列化

目录 1、应用层 2、再谈“协议” 3、网络版计算器 Socket.hpp TcpServer.hpp ServerCal.hpp ServerCal.cc Protocol.hpp ClientCal.cc Log.hpp Makefile 1、应用层 我们程序员写的一个个解决我们实际问题&#xff0c;满足我们日常需求的网络程序&#xff0c;都是在…

AtCode DP专练A-P

链接&#xff1a;Educational DP Contest - AtCoder A - Frog 1 题意&#xff1a;有n个石头&#xff0c;从1石头出发&#xff0c;每次可以跳一格或者俩格&#xff0c;代价为俩个格子间的高度差 思路&#xff1a;对于第i个石头&#xff0c;可以从石头i-1和i-2得到&#xff0c…

31.Python从入门到精通—Python数据压缩 性能度量 测试模块

31.从入门到精通&#xff1a;Python数据压缩 性能度量 测试模块 个人简介数据压缩性能度量测试模块 个人简介 &#x1f3d8;️&#x1f3d8;️个人主页&#xff1a;以山河作礼。 &#x1f396;️&#x1f396;️:Python领域新星创作者&#xff0c;CSDN实力新星认证&#xff0c…

分类预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积长短期记忆网络多输入分类预测

分类预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积长短期记忆网络多输入分类预测 目录 分类预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积长短期记忆网络多输入分类预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-CNN-LSTM贝叶斯优化卷积长短期记…

深度好文:解决Ubuntu 18.04安装nvidia显卡驱动,导致内核不匹配:无需重装系统修复内核

深度好文&#xff1a;解决Ubuntu 18.04安装nvidia显卡驱动&#xff0c;导致内核不匹配&#xff1a;无需重装系统修复内核 目录 一、问题描述二、尝试修复三、安装Nvidia驱动和CUDA并配置cuDNN四、总结 一、问题描述 昨天打算更新一下Ubuntu 18.04的显卡驱动&#xff0c;以支持…

Eclipse新建java类的操作流程

一、在左侧空白区域&#xff0c;点击鼠标右键。 二、点击new&#xff0c;选择Java Project &#xff08;由于这里不知道怎么截图&#xff0c;就用手机拍了一张&#xff0c;希望不要介意&#xff09; 三、 给project文件起个名字&#xff0c;其他都不用管&#xff0c;点击Finis…

云防护是怎么能帮助用户做好网络安全

在数字化时代&#xff0c;网络安全威胁呈现出愈发复杂和多样化的趋势。 无论是个人用户、小型企业还是大型企业&#xff0c;都面临着来自全球各地的网络攻击风险。这些攻击可能导致数据泄露、服务中断、财务损失甚至声誉受损。因此&#xff0c;采取有效的安全防护措施变得至关…

HarmonyOS 应用开发之Stage模型启动FA模型PageAbility

本小节介绍Stage模型的两种应用组件如何启动FA模型的PageAbility组件。 UIAbility启动PageAbility UIAbility启动PageAbility和UIAbility启动UIAbility的方式完全相同。 说明&#xff1a; 需注意FA模型中abilityName由bundleName AbilityName组成&#xff0c;具体见示例。 i…

不允许你不知道的 MySQL 优化实战(一)

文章目录 1、查询SQL尽量不要使用select *&#xff0c;而是select具体字段。2、如果知道查询结果只有一条或者只要最大/最小一条记录&#xff0c;建议用limit 13、应尽量避免在where子句中使用or来连接条件4、优化limit分页5、优化你的like语句6、使用where条件限定要查询的数据…

uniapp开发App(二)开通 微信授权登录功能(应用签名、证书、包名 全明白)

前言&#xff1a;开发App肯定要包含登陆&#xff0c;常用登陆方式很多&#xff0c;我选择微信登陆。 一、如何获得微信的授权登陆 答&#xff1a;申请&#xff0c;根据uniapp官网的提示有如下三个步骤 开通 1. 登录微信开放平台区&#xff0c;添加移动应用并提交审核&#xf…

C语言中的文件和文件操作

目录 为什么会有文件&#xff1f; 文件名 ⼆进制⽂件和⽂本⽂件&#xff1f; ⽂件的打开和关闭 流 标准流 ⽂件指针 ⽂件的打开和关闭 顺序读写函数介绍 对⽐⼀组函数&#xff1a; 文件的随机读写 fseek ftell rewind ⽂件读取结束的判定 被错误使⽤的 feof ⽂件…

PCL点云处理之重复随机采样一致性(RRANSAC法)平面拟合(二百三十七)

PCL点云处理之重复随机采样一致性(RRANSAC法)平面拟合(二百三十七) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 pcl::SAC_RRANSAC"是 PCL库中的一个方法,是 RANSAC 方法的改进版本,通过多次重复采样和模型拟合来提高鲁棒性。RRANSAC 的思想是在 RANSAC 的基…

基于深度学习的图书管理推荐系统(python版)

基于深度学习的图书管理推荐系统 1、效果图 1/1 [] - 0s 270ms/step [13 11 4 19 16 18 8 6 9 0] [0.1780757 0.17474999 0.17390694 0.17207369 0.17157653 0.168248440.1668652 0.16665359 0.16656876 0.16519257] keras_recommended_book_ids深度学习推荐列表 [9137…