代码随想录第25天 | 组合总和||| 、 电话号码的字母组合

一、前言

参考文献:代码随想录

今天的还是回溯算法,主要用到了昨天的回溯组合方法和巧妙思路方法,让我们继续为算法打基础吧!

二、组合总和||| 

1、思路:

这一题和昨日的组合没啥太大区别只是遍历的范围变为了固定的1~9,所以只需要在for循环中做做手脚即可。

(1)首先还是确定返回值和参数,这里和昨天的一样,返回void,参数三个参数,组合大小,总和大小,以及开始位置

void backtracking(int k, int n, int Instart) 

(2)接着就是终止条件了,这个需要判断两个条件,以来确认是否符合要求

if (sum == n && path.size() == k) {result.push_back(path);return;}

长度和大小要符合要求。

(3)接着就是for循环和递归回溯了,最开始的版本是

        for (int i = Instart; i < 10; i++) {path.push_back(i);sum += i;backtracking(k ,n, i + 1);// 回溯,重新利用path.pop_back();sum -= i;

这里就没有涉及到剪枝的操作,而只是全部暴力递归了,然而我们发现sum>n时,就可以提前回溯了,因为后面的肯定不符合要求了。

 

        for (int i = Instart; i < 10 - (k - path.size()) + 1; i++) {path.push_back(i);sum += i;// 剪枝操作,只要sum大于n就可以直接剪掉了if (sum > n) {path.pop_back();sum -= i;return;}backtracking(k ,n, i + 1);// 回溯,重新利用path.pop_back();sum -= i;}

2、整体代码如下:

class Solution {
private:vector<int> path; // 存储单个组合vector<vector<int>> result; // 返回结果int sum; // 统计是否等于nvoid backtracking(int k, int n, int Instart) {if (sum == n && path.size() == k) {result.push_back(path);return;}for (int i = Instart; i < 10 - (k - path.size()) + 1; i++) {path.push_back(i);sum += i;// 剪枝操作,只要sum大于n就可以直接剪掉了if (sum > n) {path.pop_back();sum -= i;return;}backtracking(k ,n, i + 1);// 回溯,重新利用path.pop_back();sum -= i;}}
public:vector<vector<int>> combinationSum3(int k, int n) {backtracking(k, n, 1);return result;}
};

 三、电话号码的字母组合

1、思路:

这个题目,我根据我的印象做了,但是出不来,主要是对c++的STL不熟悉所以导致出不来结果,然后只能请问GPT教授了:

(1)首先这个题目也是利用回溯,即递归里面套循环,这里我们的返回值和参数如下:

void backtracking(string digits, int startI, int startJ, vector<string> s)

 其实这里面的startJ可以省略,因为他一直是从0开始的,从头开始遍历,找到组合项,digits就是需要按的按键,startI为按键的开始位置,s就是按键所对应的数字了

(2)终止条件,也很普遍,这里就不多说了

        if (path.size() == digits.size()) {result.push_back(path);return;}

(3)接着就是循环和递归了,这里面略微有些技巧,但是不多

for (int i = startI; i < digits.size(); i++) {// 判断这个按键包含数字的多少int digit = digits[i] - '2';for (int j = startJ; j < s[digit].size(); j++) {path.push_back(s[digit][j]);backtracking(digits, i + 1, 0, s);path.pop_back();}}

 一共嵌套两层循环,第一层是按键的位置,第二层是按键包含的字母,就开始递归,回溯了。

2、整体代码如下:

class Solution {
private:string path;vector<string> result;void backtracking(string digits, int startI, int startJ, vector<string> s) {if (path.size() == digits.size()) {result.push_back(path);return;}for (int i = startI; i < digits.size(); i++) {int digit = digits[i] - '2';for (int j = startJ; j < s[digit].size(); j++) {path.push_back(s[digit][j]);backtracking(digits, i + 1, 0, s);path.pop_back();}}}
public:vector<string> letterCombinations(string digits) {if (digits.size() == 0) {return result;}vector<string> s = {"abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};backtracking(digits, 0, 0, s);return result;}
};

今日学习时间:1.5小时

leave message:

The boundless forest sheds its leaves shower by shower; the endless river rolls its waves hour after hour.

无边落木萧萧下,不尽长江滚滚来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782649.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

未来智慧停车:技术架构解析与创新应用

随着城市化进程的不断加速&#xff0c;停车难题已成为城市居民生活中的一大痛点。传统的停车方式已经无法满足日益增长的停车需求&#xff0c;而智慧停车系统则成为了解决这一难题的重要途径。本文将深入探讨智慧停车系统的技术架构&#xff0c;并探索其在城市管理和用户体验上…

echarts双柱状堆叠图

效果 代码 option {tooltip: {trigger: axis,axisPointer: { // 坐标轴指示器&#xff0c;坐标轴触发有效type: shadow // 默认为直线&#xff0c;可选为&#xff1a;line | shadow},formatter: function (params) { var res<div><p>时间&am…

数据库聚簇索引和非聚簇索引的区别

聚簇索引&#xff08;Clustered Index&#xff09;和非聚簇索引&#xff08;Non-clustered Index&#xff09;是数据库中两种不同的索引类型&#xff0c;它们的主要区别在于数据的存储方式和索引的结构&#xff1a; 数据存储方式&#xff1a; 聚簇索引&#xff1a;索引的叶子节…

ssm框架笔记-maven

html是骨头 css使皮肤 js是你能做的动作 MAVEN 依赖管理&#xff1a;1.声明dependenciys标签 2.maven search3。 版本号提取 3.$引用 3.2依赖传递和冲突 依赖传递指的是当一个模块或库 A 依赖于另一个模块或库 B&#xff0c;而 B 又依赖于模块或库 C&#xff0c;那么 A 会间…

vue3+vite模版框架 tabs右键刷新时丢失路由参数

问题&#xff1a; 标题栏的tabs的右键&#xff1a;刷新时&#xff0c;没有保存上一个页面传递过来的参数 分析&#xff1a; TagView.vue刷新事件 function refreshSelectedTag(view: TagView) {console.log(|--执行刷新, view)tagsViewStore.delCachedView(view);const {full…

吴恩达2022机器学习专项课程(一) 4.1 梯度下降

问题预览 梯度下降算法的作用是&#xff1f;梯度下降的过程&#xff1f;梯度下降和最小化成本函数的联系&#xff1f;所有的成本函数都是一个形状吗&#xff1f;在非凸形状中&#xff0c;梯度下降的更新过程是&#xff1f;在非凸形状中&#xff0c;不同的初值对最小化成本函数…

对于提高Web安全,WAF能有什么作用

数字化时代&#xff0c;网络安全已经成为了一个不可忽视的重要议题。网络攻击事件频发&#xff0c;各种安全隐患层出不穷&#xff0c;如何有效地保护我们的网络空间&#xff0c;确保信息安全&#xff0c;已成为一项迫切的任务。而Web应用防火墙&#xff0c;正是守护网络安全的一…

【LIMS】CMA与CNAS:中国认证体系中的两大支柱

目录 一、CMA&#xff1a;[中国计量认证](http://cma-cma.org.cn/)什么是CMA&#xff1f;CMA的作用 二、CNAS&#xff1a;[中国合格评定国家认可委员会](https://www.cnas.org.cn/)什么是CNAS&#xff1f;CNAS的作用 三、CMA与CNAS的关系相互促进共同目标 结语系列文章版本记录…

国内顶级大牛整理:分布式消息中间件实践笔记+分布式核心原理解析

XMPP JMS RabbitMQ 简介 工程实例 Java 访问RabbitMQ实例 Spring 整合RabbitMQ 基于RabbitMQ的异步处理 基于RabbitMQ的消息推送 RabbitMQ实践建议 虚拟主机 消息保存 消息确认模式 消费者应答 流控机制 通道 总结 ActiveMQ 简介 工程实例 Java 访问ActiveMQ实例…

【21-40】计算机网络基础知识(非常详细)从零基础入门到精通,看完这一篇就够了

【21-40】计算机网络基础知识&#xff08;非常详细&#xff09;从零基础入门到精通&#xff0c;看完这一篇就够了 以下是本文参考的资料 欢迎大家查收原版 本版本仅作个人笔记使用21、HTTPS是如何保证数据传输的安全&#xff0c;整体的流程是什么&#xff1f;&#xff08;SSL是…

运筹学基础(三):求解整数规划的切平面法(cutting plane method)

文章目录 算法思想一个例子参考文档 算法思想 先将整数规划问题松弛为线性规划问题&#xff0c;然后割掉线性规划问题可行域的一部分&#xff08;只包含非整数解&#xff09;&#xff0c;使得线性规划问题的最优解在原整数规划问题的可行域某顶点上取得。 因此&#xff0c;割平…

Flink SQL 基于Update流出现空值无法过滤问题

问题背景 问题描述 基于Flink-CDC &#xff0c;Flink SQL的实时计算作业在运行一段时间后&#xff0c;突然发现插入数据库的计算结果发生部分主键属性发生失败&#xff0c;导致后续计算结果无法插入&#xff0c; 超过失败次数失败的情况问题报错 Caused by: java.sql.BatchUp…

智慧公厕:让公共厕所变得更智能、更卫生、更舒适的解决方案

近年来&#xff0c;随着城市发展的不断壮大&#xff0c;公共设施的建设也越来越受到重视。而公共厕所作为城市基础设施的一部分&#xff0c;是城市文明程度的重要体现。然而&#xff0c;传统的公共厕所在使用、运行、管理、养护等方面存在诸多问题&#xff0c;严重影响了市民的…

特征选择集大成的包-arfs(python)

特征选择集大成的包-arfs&#xff08;python&#xff09; 一、介绍 arfs介绍文档https://arfs.readthedocs.io/en/latest/Introduction.html 英文好的朋友可以阅读作者写的介绍&#xff1a; All relevant feature selection means trying to find all features carrying info…

YOLOv5改进系列:升级版ResNet的新主干网络DenseNet

一、论文理论 论文地址&#xff1a;Densely Connected Convolutional Networks 1.理论思想 DenseNet最大化前后层信息交流&#xff0c;通过建立前面所有层与后面层的密集连接&#xff0c;实现了特征在通道维度上的复用&#xff0c;不但减缓了梯度消失的现象&#xff0c;也使其…

【二分图】【二分图最大匹配】LCP 04. 覆盖

作者推荐 视频算法专题 本文涉及知识点 二分图 二分图最大匹配 LeetCode LCP 04. 覆盖 你有一块棋盘&#xff0c;棋盘上有一些格子已经坏掉了。你还有无穷块大小为1 * 2的多米诺骨牌&#xff0c;你想把这些骨牌不重叠地覆盖在完好的格子上&#xff0c;请找出你最多能在棋盘…

2024年京东云主机租用价格_京东云服务器优惠价格表

2024年京东云服务器优惠价格表&#xff0c;轻量云主机优惠价格5.8元1个月、轻量云主机2C2G3M价格50元一年、196元三年&#xff0c;2C4G5M轻量云主机165元一年&#xff0c;4核8G5M云主机880元一年&#xff0c;游戏联机服务器4C16G配置26元1个月、4C32G价格65元1个月、8核32G费用…

新书速递——《可解释AI实战(PyTorch版)》

本书旨在帮助你实施最新的可解释AI技术&#xff0c;以构建公平且可解释的AI系统。可解释AI是当今AI研究中的热门话题&#xff0c;但只有少数资源和指南涵盖了所有重要技术&#xff0c;这些技术对实践者来说非常有价值。本书旨在填补这一空白。 本书读者对象 本书既适合那些有兴…

GIt的原理和使用(五):模拟多人协作的两种情况

目录 多人协作 多人协作一 准备工作 协作开发 多人协作二 准备工作 额外场景 申请单合并分支 更推荐写法 远程分支删除后&#xff0c;本地git branch -a依然能看到的解决办法 多人协作 多人协作一 目标&#xff1a;在远程master分支下的file.txt文件新增代码“aaa”…

鸿蒙OS开发实例:【窥探网络请求】

HarmonyOS 平台中使用网络请求&#xff0c;需要引入 "ohos.net.http", 并且需要在 module.json5 文件中申请网络权限, 即 “ohos.permission.INTERNET” 本篇文章将尝试使用 ohos.net.http 来实现网络请求 场景设定 WeiBo UniDemo HuaWei : 请求顺序WeiBo1 UniDem…