深入探讨分布式ID生成方案


✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 
🎈🎈作者主页: 喔的嘛呀🎈🎈
✨✨ 帅哥美女们,我们共同加油!一起进步!✨✨ 

​​​​​​​目录

引言

一. UUID(Universally Unique Identifier)

二、数据库自增ID

三. 基于Redis的方案

四. Twitter的snowflake算法

五、百度UidGenerator

结语


引言

在分布式系统中,生成唯一标识符(ID)是一个常见的需求。在这篇博客中,我们将介绍几种常见的分布式ID生成方案,包括UUID、Snowflake算法、基于数据库的方案和基于Redis的方案。我们将深入探讨每种方案的原理、优缺点,并提供相应的代码示例。

一. UUID(Universally Unique Identifier)

UUID(Universally Unique Identifier)是一种标准化的128位数字(16字节)格式,通常用32个十六进制数字表示。UUID的目的是让分布式系统中的多个节点生成的标识符在时间和空间上都是唯一的。

UUID通常由以下几部分组成:

  1. 时间戳:占据前32位,表示生成UUID的时间戳。
  2. 时钟序列号:占据接下来的16位,保证在同一时刻生成的UUID的唯一性。
  3. 全局唯一的节点标识符:占据最后的48位,通常是机器的MAC地址。

UUID的生成方法有多种,其中比较常见的是基于当前时间戳和随机数生成。Java中可以使用java.util.UUID类来生成UUID,示例如下:

import java.util.UUID;public class UUIDGenerator {public static void main(String[] args) {UUID uuid = UUID.randomUUID();System.out.println("Generated UUID: " + uuid.toString());}
}

这段代码将生成一个类似于550e8400-e29b-41d4-a716-446655440000的UUID。由于UUID的唯一性和随机性,通常用于分布式系统中的唯一标识符,例如作为数据库表的主键。 

二、数据库自增ID


使用数据库的id自增策略,如 MySQL 的 auto_increment。并且可以使用两台数据库分别设置不同
步长,生成不重复ID的策略来实现高可用。
优点:数据库生成的ID绝对有序,高可用实现方式简单
缺点:需要独立部署数据库实例,成本高,有性能瓶颈

在许多关系型数据库中,自增ID是一种常见的用于唯一标识表中记录的方式。下面我将以MySQL为例,介绍如何在数据库中使用自增ID。

首先,我们需要创建一个带有自增ID的表。以下是一个简单的示例表的创建语句:

CREATE TABLE users (id INT AUTO_INCREMENT PRIMARY KEY,name VARCHAR(50) NOT NULL,email VARCHAR(100) NOT NULL
);

在这个例子中,id 列被定义为自增列,并且被指定为主键。每次向表中插入一条记录时,id 列都会自动递增,确保每个记录都有唯一的ID。

接下来,我们可以通过插入数据来演示自增ID的工作原理:

INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com');
INSERT INTO users (name, email) VALUES ('Bob', 'bob@example.com');
INSERT INTO users (name, email) VALUES ('Charlie', 'charlie@example.com');

查询表中的数据:

SELECT * FROM users;

输出应该类似于:

+----+---------+------------------+
| id | name    | email            |
+----+---------+------------------+
| 1  | Alice   | alice@example.com|
| 2  | Bob     | bob@example.com  |
| 3  | Charlie | charlie@example.com|
+----+---------+------------------+

每次插入一条记录时,id 列都会自动递增。这就是自增ID的基本工作原理。

三. 基于Redis的方案

Redis的所有命令操作都是单线程的,本身提供像 incr 和 increby 这样的自增原子命令,所以能保
证生成的 ID 肯定是唯一有序的。
优点:不依赖于数据库,灵活方便,且性能优于数据库;数字ID天然排序,对分页或者需要排
序的结果很有帮助。
缺点:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度;需要编码和配置的工作
量比较大。
考虑到单节点的性能瓶颈,可以使用 Redis 集群来获取更高的吞吐量。假如一个集群中有5台
Redis。可以初始化每台 Redis 的值分别是1, 2, 3, 4, 5,然后步长都是 5。

在 Redis 中生成自增 ID 通常可以通过使用 INCR 命令实现。INCR 命令会将存储在指定键中的数字递增 1,并返回递增后的值。你可以利用这个特性来实现一个简单的自增 ID 生成器。以下是一个基本的示例:

import redis.clients.jedis.Jedis;public class RedisIdGenerator {private Jedis jedis;public RedisIdGenerator() {this.jedis = new Jedis("localhost");}public long getNextId(String key) {return jedis.incr(key);}public static void main(String[] args) {RedisIdGenerator idGenerator = new RedisIdGenerator();String key = "my_id_counter";// 使用示例for (int i = 0; i < 5; i++) {long id = idGenerator.getNextId(key);System.out.println("Generated ID: " + id);}}
}

在这个示例中,我们首先创建了一个 RedisIdGenerator 类,该类包含一个 getNextId 方法,用于生成下一个自增 ID。在 main 方法中,我们创建了一个实例,并连续调用 getNextId 方法来生成 ID。

需要注意的是,这只是一个简单的示例。在实际应用中,你可能需要考虑并发访问时的线程安全性,以及如何处理 Redis 连接的创建和关闭等问题。

四. Twitter的snowflake算法

Twitter的Snowflake算法是一种用于生成分布式唯一ID的算法,它可以在分布式系统中生成全局唯一的ID。Snowflake算法的核心思想是将一个64位的long型的ID分成多个部分,包括时间戳、机器ID和序列号。具体来说,Snowflake算法的ID结构如下:

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| unused |   timestamp   |   worker ID  | sequence
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • 位表示未使用的位,可根据需要保留或用于其他用途。
  • 41位表示时间戳,可以表示的时间范围为2^41 / 1000 / 60 / 60 / 24 = 69年左右。
  • 10位表示机器ID,可以用来区分不同的机器。
  • 12位表示序列号,可以用来区分同一机器同一时间戳内生成的不同ID。

Snowflake算法生成ID的过程如下:

  1. 获取当前时间戳,单位是毫秒。
  2. 使用配置的机器ID。
  3. 如果当前时间戳与上一次生成ID的时间戳相同,则使用序列号加1;否则序列号重置为0。
  4. 将时间戳、机器ID和序列号合并生成最终的ID。

Snowflake算法的优点是生成的ID是递增的、趋势递增的,并且可以根据需要提取出生成ID的时间戳和机器ID。然而,Snowflake算法也有一些缺点,例如在高并发情况下可能会出现ID重复的情况,需要适当的措施来避免这种情况的发生。

Snowflake 算法是 Twitter 开源的一种分布式唯一 ID 生成算法,用于生成全局唯一的 ID。它的核心思想是将 ID 分为不同的部分,包括时间戳、机器 ID 和序列号。下面是一个详细的实现:

public class SnowflakeIdGenerator {private final long twepoch = 1288834974657L; // 起始时间戳,可以根据实际需求调整private final long workerIdBits = 5L; // 机器 ID 的位数private final long datacenterIdBits = 5L; // 数据中心 ID 的位数private final long maxWorkerId = -1L ^ (-1L << workerIdBits); // 最大机器 IDprivate final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 最大数据中心 IDprivate final long sequenceBits = 12L; // 序列号的位数private final long workerIdShift = sequenceBits; // 机器 ID 左移位数private final long datacenterIdShift = sequenceBits + workerIdBits; // 数据中心 ID 左移位数private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 时间戳左移位数private final long sequenceMask = -1L ^ (-1L << sequenceBits); // 序列号掩码private long workerId;private long datacenterId;private long sequence = 0L;private long lastTimestamp = -1L;public SnowflakeIdGenerator(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException("Worker ID 必须介于 0 和 " + maxWorkerId + " 之间");}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException("Datacenter ID 必须介于 0 和 " + maxDatacenterId + " 之间");}this.workerId = workerId;this.datacenterId = datacenterId;}public synchronized long nextId() {long timestamp = timeGen();if (timestamp < lastTimestamp) {throw new RuntimeException("时钟回拨发生在 " + (lastTimestamp - timestamp) + " 毫秒内");}if (timestamp == lastTimestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0L;}lastTimestamp = timestamp;return ((timestamp - twepoch) << timestampLeftShift)| (datacenterId << datacenterIdShift)| (workerId << workerIdShift)| sequence;}private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}private long timeGen() {return System.currentTimeMillis();}public static void main(String[] args) {SnowflakeIdGenerator idGenerator = new SnowflakeIdGenerator(1, 1);// 使用示例for (int i = 0; i < 5; i++) {long id = idGenerator.nextId();System.out.println("Generated ID: " + id);}}
}

在这个实现中,我们首先定义了 Snowflake 算法中需要用到的各种参数和位移操作。然后,我们实现了一个 nextId 方法来生成下一个 ID。在 main 方法中,我们创建了一个 SnowflakeIdGenerator 实例,并连续调用 nextId 方法来生成 ID。

需要注意的是,Snowflake 算法中的时间戳部分可以根据实际需求进行调整,以确保生成的 ID 在不同时间内仍然是唯一的。

五、百度UidGenerator

百度的 UIDGenerator 是一个分布式唯一 ID 生成器,类似于 Twitter 的 Snowflake 算法,但在细节上有所不同。以下是一个简化的实现,展示了其基本原理:

import java.util.concurrent.atomic.AtomicLong;public class BaiduUidGenerator {private final long twepoch = 1288834974657L; // 起始时间戳,可以根据实际需求调整private final long workerIdBits = 10L; // 机器 ID 的位数private final long sequenceBits = 12L; // 序列号的位数private final long workerIdShift = sequenceBits; // 机器 ID 左移位数private final long timestampLeftShift = sequenceBits + workerIdBits; // 时间戳左移位数private final long sequenceMask = -1L ^ (-1L << sequenceBits); // 序列号掩码private final long workerId;private volatile long lastTimestamp = -1L;private volatile long sequence = 0L;public BaiduUidGenerator(long workerId) {if (workerId < 0 || workerId >= (1 << workerIdBits)) {throw new IllegalArgumentException("Worker ID 必须介于 0 和 " + ((1 << workerIdBits) - 1) + " 之间");}this.workerId = workerId;}public synchronized long nextId() {long timestamp = timeGen();if (timestamp < lastTimestamp) {throw new RuntimeException("时钟回拨发生在 " + (lastTimestamp - timestamp) + " 毫秒内");}if (timestamp == lastTimestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0L;}lastTimestamp = timestamp;return ((timestamp - twepoch) << timestampLeftShift)| (workerId << workerIdShift)| sequence;}private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}private long timeGen() {return System.currentTimeMillis();}public static void main(String[] args) {BaiduUidGenerator uidGenerator = new BaiduUidGenerator(1);// 使用示例for (int i = 0; i < 5; i++) {long id = uidGenerator.nextId();System.out.println("Generated ID: " + id);}}
}

在这个实现中,我们首先定义了 BaiduUidGenerator 类,其中包含了与 Snowflake 算法类似的参数和位移操作。然后,我们实现了一个 nextId 方法来生成下一个 ID。在 main 方法中,我们创建了一个 BaiduUidGenerator 实例,并连续调用 nextId 方法来生成 ID。

需要注意的是,这只是一个简化的实现,实际应用中可能需要根据具体需求进行调整和优化。

结语

以上是几种常见的分布式ID生成方案,每种方案都有其适用的场景,开发人员可以根据实际需求选择合适的方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782598.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3数据库中存头像图片相对路径在前端用prop只能显示路径或无法显示图片只能显示alt中内容的问题的解决

不想看前情可以直接跳到头像部分代码 前情&#xff1a; 首先我们是在数据库中存图片相对路径&#xff0c;这里我们是在vue的src下的assets专门建一个文件夹img存头像图片。 然后我们如果用prop"avatar" label"头像"是只能显示图片路径的&#xff0c;即lo…

java数组与集合框架(一) -- 数据结构,数组

数据结构 概述 为什么要讲数据结构&#xff1f; 任何一个有志于从事IT领域的人员来说&#xff0c;数据结构&#xff08;Data Structure&#xff09;是一门和计算机硬件与软件都密切相关的学科&#xff0c;它的研究重点是在计算机的程序设计领域中探讨如何在计算机中组织和存储…

ctfshow web入门 XXE

XXE基础知识 XXE&#xff08;XML External Entity&#xff09;攻击是一种针对XML处理漏洞的网络安全攻击手段。攻击者利用应用程序在解析XML输入时的漏洞&#xff0c;构造恶意的XML数据&#xff0c;进而实现各种恶意目的。 所以要学习xxe就需要了解xml xml相关&#xff1a; …

计算数组元素中每个元素与其之前各元素的累积乘积ndarray.cumprod()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 计算数组元素中每个元素 与其之前各元素的累积乘积 ndarray.cumprod() 选择题 关于以下代码输出的结果说法正确的是&#xff1f; import numpy as np a np.array([2,4,6]) print(【显示】a ,…

彩虹外链网盘界面UI美化版超级简洁好看

彩虹外链网盘界面UI美化版 彩虹外链网盘&#xff0c;是一款PHP网盘与外链分享程序&#xff0c;支持所有格式文件的上传&#xff0c;可以生成文件外链、图片外链、音乐视频外链&#xff0c;生成外链同时自动生成相应的UBB代码和HTML代码&#xff0c;还可支持文本、图片、音乐、…

Diffusion添加噪声noise的方式有哪些?怎么向图像中添加噪声?

添加噪声的方式大致分为两种&#xff0c;一种是每张图像在任意timestep都加入一样的均匀噪声&#xff0c;另一种是按照timestep添加不同程度的噪声 一、在任意timestep都加入一样的noise batch_size 32x_start torch.rand(batch_size,3,256,256) noise torch.randn_like(x_…

XUbuntu22.04之激活Linux最新Typora版本(二百二十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

技巧 Win10电脑打开SMB协议共享文件,手机端查看

一. 打开 SMB1.0/CIFS文件共享支持 ⏹如下图所示&#xff0c;打开SMB1.0/CIFS文件共享支持 二. 开启网络发现 ⏹开启网络发现&#xff0c;确保共享的文件能在局域网内被发现 三. 共享文件夹到局域网 ⏹根据需要勾选需要共享的文件夹&#xff0c;共享到局域网 四. 共享文件查…

Linux重点思考(下)--shell脚本使用以及内核开发

Linux重点思考(下&#xff09;--shell脚本使用和组合拳 shell脚本的基础算法shell脚本写123...n的值&#xff0c;说思路Shell 脚本用于执行服务器性能测试的死循环Shell 脚本备份和定时清理垃圾文件 shell脚本的内核开发正向映射反向映射 shell脚本的基础算法 shell脚本写123……

JDBC远程连接mysql报错:NotBefore: Sat Mar 30 16:37:41 UTC 2024

虚拟机docker已经部署了mysql&#xff0c;用navicat可以直接远程连接&#xff0c;datagrip却不能&#xff0c;如图&#xff1a; 需要在最后加上 ?useSSLfalse , 如&#xff1a;jdbc:mysql://192.168.30.128:3306?useSSLfalse navicat不用加的原因是没有使用jdbc连接&#x…

java数据结构与算法刷题-----LeetCode1091. 二进制矩阵中的最短路径

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 广度优先双分裂蛇 广度优先双分裂蛇 双分裂蛇&#xff1a;是求二…

Linux 学习之路--工具篇--yum

前面介绍了权限有关的内容&#xff0c;这里继续介绍有关Linux里面常用的工具之一yum 目录 一、简单介绍 <1> 源代码安装 <2>rpm 包安装 <3>yum / apt-get(ubuntu) 安装 二、简单使用 <1>安装包介绍 <2> yum 的基本指令 -- install <…

C++:数据类型—布尔(12)

布尔类型代表就是真和假&#xff08;bool&#xff09; 真就是1&#xff08;true&#xff09; 假就是0&#xff08;false&#xff09; 也可以任务非0即为真 bool 直占用1个字节大小 语法&#xff1a;bool 变量名 (true | false&#xff09; 提示&#xff1a;bool在后期判断也是…

Capture One Pro 23中文---颠覆性的图像编辑与色彩配置

Capture One Pro 23是一款功能强大且专业的RAW图像编辑处理软件。它拥有全球领先的色彩管理技术和精细的图像编辑工具&#xff0c;可以对图片进行多种精细调整&#xff0c;包括曝光、色温、对比度、锐度等&#xff0c;以满足用户特定的后期处理需求。此外&#xff0c;Capture O…

第二百三十一回

文章目录 1. 概念介绍2. 符号和平台2.1 符号2.2 平台 3. 问题与解决3.1 常见问题3.2 解决方法 4.内容总结 我们在上一章回中介绍了"关于intl报错的问题"相关的内容&#xff0c;本章回中将介绍不同平台上换行的问题.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1…

【3】3道链表力扣题:删除链表中的节点、反转链表、判断一个链表是否有环

3道链表力扣题 一、删除链表中的节点&#x1f30f; 题目链接&#x1f4d5; 示例&#x1f340; 分析&#x1f4bb; 代码 二、反转链表&#x1f30f; 题目链接&#x1f4d5; 示例&#x1f340; 分析① 递归② 迭代 三、判断一个链表是否有环&#x1f30f; 题目链接&#x1f4d5; …

C++中使用虚函数实现多态

虚函数是C中用于实现多态&#xff08;Polymorphism&#xff09;的重要特性。下面是关于虚函数的讲解和代码示例&#xff1a;### 虚函数的定义&#xff1a; 虚函数是在基类中声明为 virtual 的成员函数。 在派生类中重写&#xff08;override&#xff09;这个虚函数&#xff0c;…

数据结构与算法 循环双链表基本运算与对称算法

一、实验内容 1、实现循环双链表的各种基本运算的算法 &#xff08;1&#xff09;初始化循环双链表h &#xff08;2&#xff09;依次采用尾插法插入a,b,c,d,e元素 &#xff08;3&#xff09;输出循环双链表h&#xff1b; &#xff08;4&#xff09;输出循环双链表h长度&am…

物联网学习1、什么是 MQTT?

MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级、基于发布-订阅模式的消息传输协议&#xff0c;适用于资源受限的设备和低带宽、高延迟或不稳定的网络环境。它在物联网应用中广受欢迎&#xff0c;能够实现传感器、执行器和其它设备之间的高效通…

HSP_04章_扩展: 进制、位运算

文章目录 10. 扩展: 进制11. 位运算11.1 二进制在运算中的说明11.2 原码 反码 补码11.3位运算符11.3.1 ~按位取反11.3.2 &按位与11.3.3 ^按位异或11.3.4 |按位或11.3.5 << 左移11.3.6 >> 右移 10. 扩展: 进制 进制介绍 进制的转换 2.1 其他进制转十进制 二进…