自动驾驶轨迹规划之时空语义走廊(一)

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

目录

1.摘要

2.系统架构

3.MPDM

4.时空语义走廊

​4.1 种子生成

4.2 具有语义边界的cube inflation

​4.3 立方体松弛


本文解析了丁文超老师的这篇论文Safe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic Corridor | IEEE Journals & Magazine | IEEE Xplore

1.摘要

引入:城市道路轨迹规划的难点在于有很多语义元素。

创新点1:不同的语义元素有不同的数学表征形式,提出了一种新的统一的时空语义走廊来为不同类别的语义元素来提供abstraction,可以推广到任何语义元素组合的场景。

创新点2:SSC由一系列互相连接的无碰撞cubes组成,其中包含了动态约束,并且轨迹生成问题可以归结于一个QP问题,并且通过贝塞尔曲线来保证轨迹安全性和可行性。

2.系统架构

第一阶段:环境理解,通过语义地图管理器管理用于本地规划目的的语义要素

第二阶段:包含自车high-level的行为预期以及他车预测轨迹的预测器

第三阶段:利用多策略决策的行为规划器

第四阶段:离散未来状态作为生成走廊的种子的运动规划器

3.MPDM

行为规划问题被被表述为多智能体的POMDP问题,来对动态环境中的交互和不确定性进行建模。但是当车辆数量增加,计算负担会很重。MDPM将问题简化为有限的闭环离散策略(如向左变道,车道保持等)。自车和他车都在执行简单的策略。

自车和他车的预测都通过简化的模型前向模拟来实现,并且结合理想化的转向和速度控制器来评估最佳行为。而自车的前向模拟状态是走廊生成过程中的种子。由于粗糙的分辨率和简化的模型,这不能直接由车辆执行,这也是轨迹生成器的必要性。

MPDM同时为多个行为提供前向模拟,我们为所有潜在行为生成候选轨迹。

4.时空语义走廊

由于大多数语义元素都与车道几何结构有关,因此我们需要将笛卡尔坐标系转换到基于参考车道的frenet坐标系,并且对于时空联合规划我们将处理一个SLT三维配置空间。语义主要有obstacle-like和constraint-like两类元素。障碍物就是slt空间内不允许驶入的空间,约束就是一些速度限制等。而语义边界可以对所有constraint-like的元素进行统一的表示。

下图则是走廊生成的算法流程

4.1 种子生成

种子是由行为规划器中前向模拟状态投影到SLT空间下得到的。我们要求连续种子构建的初始立方体无碰撞,例如,对于以30m/s的纵向速度和0.15s的种子分辨率,所需的间隙约为4.5m,这比需要的紧急制动距离短得多。因此,如果有碰撞直接驳回的判断是合理的。

而在种子周围生成走廊的动机是对拓扑等效的自由空间进行建模。比如这张图显示了种子的拓扑含义是在这两个动态障碍物之间通行。由于膨胀在碰到语义边界或障碍物后停止,因此膨胀过后的走廊的同伦与种子是一样的。

4.2 具有语义边界的cube inflation

初始立方体是通过两个连续的种子生成的,立方体的膨胀是在碰到障碍物与语义边界时停止。这样处理使得不在语义边界内的立方体不用考虑约束,在语义边界的立方体直接关联约束。未来保持凸性,立方体之间没有重叠。但也可以引入时间进行优化,重叠可能是有益的。

4.3 立方体松弛

在立方体膨胀过程之后,膨胀的立方体几乎与语义边界匹配,但比如变道持续时间约束等都是软约束,我们可以通过cube relaxation来松弛边界,但要保持硬约束和无碰撞。允许松弛的最大裕度一般由两个连续立方体结合运动学去估计。

下一次将介绍轨迹生成与实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何计算KST指标,昂首资本一个公式计算

在上一篇文章中,Anzo Capital昂首资本和各位投资者一起了解了KST指标,今天我们继续分享如何计算KST指标。 首先投资者可以在时间范围9、12、18和24分析变化率值。 前三个值(时间帧9、12、18)用EMA 26平滑,最后一个值用EMA 39平滑。 然后&…

从0开始搭建基于VUE的前端项目

准备与版本 安装nodejs(v20.11.1)安装vue脚手架(vue/cli 5.0.8) ,参考(https://cli.vuejs.org/zh/)vue版本(2.7.16),vue2的最后一个版本 初始化项目 创建一个git项目(可以去gitee/github上创建&#xff…

数据分析之POWER Piovt透视表分析

将几个数据表之间进行关联 生成数据透视表 超级透视表这里的字段包含子字段 这三个月份在前面的解决办法 1.选中这三个月份,鼠标可移动的时候移动到后面 2.在原数据进行修改 添加列获取月份,借助month的函数双击日期 选择月份这列----按列排序-----选择月…

搜索与图论——Dijkstra算法求最短路

最短路算法 稠密图与稀疏图 n为点数,m为边数。m远小于n的平方为稀疏图,m接近n的平方为稠密图。 稀疏图用邻接表存,稠密图用邻接矩阵存 朴素版dijkstra时间复杂度为O(n^2),对于稠密图可以ac,但遇到稀疏图时会TLE。 dijkstra函数实…

Linux权限管理

文章目录 linux权限管理1.Linux权限的概念2.Linux权限管理2.1 文件访问者的分类(人)2.2 文件类型和访问权限(事物属性)2.2.1 文件类型2.2.2 基本权限 2.3文件权限值的表示方法2.3.1 字符表示方法2.3.2 八进制数值表示方法 2.4 文件…

CV领域 交叉注意力(Cross Attention)中QKV的含义理解

交叉注意力公式: 注意力的输入: (1)KV:图像的全局特征 (2)Q:告诉attention需要关注哪些重要特征 公式计算过程理解: (1):Q和K相乘…

后疫情时代CS保研沉思录暨2023年个人保研经验贴

个人情况 正如古话所说,最适合你的才是最好的。因此这里先贴上个人基本情况,用作参考。 如果你的个人情况与我相近,则有更强的参考作用。如果情况相差较大,也可以姑且引为例子来研究。 学校层次:中流至末流211 专业…

C之易错注意点转义字符,sizeof,scanf,printf

目录 前言 一:转义字符 1.转义字符顾名思义就是转换原来意思的字符 2.常见的转义字符 1.特殊\b 2. 特殊\ddd和\xdd 3.转义字符常错点----计算字符串长度 注意 : 如果出现\890,\921这些的不是属于\ddd类型的,,不是一个字符…

把本地文件上传到HDFS上操作步骤

因为条件有限,我这里以虚拟机centos为例 实验条件:我在虚拟机上创建了三台节点,部署了hadoop,把笔记本上的数据上传到hdfs中 数据打包上传到虚拟机节点上 采用的是rz命令,可以帮我们上传数据 没有的话可以使用命令安装…

那个男人开发了一个多账号浏览器

核心价值1:实现了一个浏览器同时登录多个账号,标签页之间信息不共享核心价值2:聚焦于账号管理,所有需要登录多账号都用这个浏览器减轻了找入口的烦恼核心价值3:赏心悦目核心价值4:悬浮功能核心价值5:PC和手机模式一键切换核心价值6:不同于浏览…

Redis 全景图(1)--- 关于 Redis 的6大模块

这是我第一次尝试以长文的形式写一篇Redis的总结文章。这篇文章我想写很久了,只是一直碍于我对Redis的掌握没有那么的好,因此迟迟未动笔。这几天,我一直在看各种不同类型的Redis文章,通过阅读这些文章,引发了我对于Red…

DolphinScheduler on k8s 云原生部署实践

文章目录 前言利用Kubernetes技术云原生平台初始化迁移基于Argo CD添加GitOpsDolphinScheduler 在 k8s 上的服务自愈可观测性集成服务网格云原生工作流调度从HDFS升级到S3文件技术总结 前言 DolphinScheduler 的高效云原生部署模式,比原始部署模式节省了95%以上的人…

【论文通读】AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation 前言AbstractMotivationFrameworkConversable AgentsConversation Programming ApplicationA1: Math Problem SolvingA2: Retrieval-Augmented Code Generation and Question AnsweringA3: Decision…

相机标定学习记录

相机标定是计算机视觉和机器视觉领域中的一项基本技术,它的主要目的是通过获取相机的内部参数(内参)和外部参数(外参),以及镜头畸变参数,建立起现实世界中的点与相机成像平面上对应像素点之间准…

深度学习算法概念介绍

前言 深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功&#xf…

【STM32 HAL库SPI/QSPI协议学习,基于外部Flash读取。】

1、SPI协议 简介 SPI 协议是由摩托罗拉公司提出的通讯协议 (Serial Peripheral Interface),即串行外围设备接口,是 一种高速全双工的通信总线。它被广泛地使用在 ADC、LCD 等设备与 MCU 间,要求通讯速率 较高的场合。 SPI 物理层 SPI 通讯…

Nginx(Docker 安装的nginx)配置域名SSL证书

1.首先确保Linux环境上已经安装了docker(可参考Linux安装Docker-CSDN博客) 2.通过docker 安装nginx(可参考Linux 环境安装Nginx—源码和Dokcer两种安装方式-CSDN博客) 3.安装SSL证书 3.1 在宿主机中创建证书目录并上传证书&…

【数据结构与算法篇】动态顺序表及相关OJ算法题

【数据结构与算法篇】动态顺序表及相关OJ算法题 🥕个人主页:开敲🍉 🔥所属专栏:数据结构与算法🍅 目录 【数据结构与算法篇】动态顺序表及相关OJ算法题 1. 动态顺序表的实现 1.1 SeqList.h 头文件声明 1.…

基于LSB(最低有效位)的图像水印算法,Matlab实现

博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…

php将网页用wkhtmltoimage内容生成为图片

php架构ThinkPHP6 1. 安装 knp-snappy架构 composer require knplabs/knp-snappy use Knp\Snappy\Image; use Illuminate\Support\Facades\Storage;// 生成图片 /user/local/bin/wkhtmltoimage为你的wkhtmltoimage的位置。 $snappy new Image(/usr/local/bin/wkhtmltoimage…