力扣题目链接
class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// targetSum:目标和,也就是题目中的n。// k:题目中要求k个数的集合。// sum:已经收集的元素的总和,也就是path里元素的总和。// startIndex:下一层for循环搜索的起始位置。void backtracking(int targetSum, int k, int sum, int startIndex) {if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9; i++) {sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear(); // 可以不加backtracking(n, k, 0, 1);return result;}
};
回溯算法那个模板你了解了嘛
其实多用几次它就能很好的理解这类题目了
代码随想录 (programmercarl.com)
思路
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
相对于77. 组合 (opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。
想到这一点了,做过77. 组合 (opens new window)之后,本题是简单一些了。
本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。
例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。
选取过程如图:
图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。
#回溯三部曲
- 确定递归函数参数
和77. 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
接下来还需要如下参数:
- targetSum(int)目标和,也就是题目中的n。
- k(int)就是题目中要求k个数的集合。
- sum(int)为已经收集的元素的总和,也就是path里元素的总和。
- startIndex(int)为下一层for循环搜索的起始位置。
所以代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
- 确定终止条件
什么时候终止呢?
在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size() 和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:
if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回
}
- 单层搜索过程
本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9
如图:
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
代码如下:
for (int i = startIndex; i <= 9; i++) {sum += i;path.push_back(i);backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯
}
别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!
参照关于回溯算法,你该了解这些! (opens new window)中的模板,不难写出如下C++代码:
class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// targetSum:目标和,也就是题目中的n。// k:题目中要求k个数的集合。// sum:已经收集的元素的总和,也就是path里元素的总和。// startIndex:下一层for循环搜索的起始位置。void backtracking(int targetSum, int k, int sum, int startIndex) {if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9; i++) {sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear(); // 可以不加backtracking(n, k, 0, 1);return result;}
};
#剪枝
这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。
如图:
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:
if (sum > targetSum) { // 剪枝操作return;
}
当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝sum += i; // 处理path.push_back(i); // 处理if (sum > targetSum) { // 剪枝操作sum -= i; // 剪枝之前先把回溯做了path.pop_back(); // 剪枝之前先把回溯做了return;}backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯
}
和回溯算法:组合问题再剪剪枝 (opens new window)一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。
最后C++代码如下:
class Solution {
private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果void backtracking(int targetSum, int k, int sum, int startIndex) {if (sum > targetSum) { // 剪枝操作return; }if (path.size() == k) {if (sum == targetSum) result.push_back(path);return; // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝sum += i; // 处理path.push_back(i); // 处理backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndexsum -= i; // 回溯path.pop_back(); // 回溯}}public:vector<vector<int>> combinationSum3(int k, int n) {result.clear(); // 可以不加path.clear(); // 可以不加backtracking(n, k, 0, 1);return result;}
};
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
自己的理解:
关于枝剪这一步的优化,自己还不是很明白。
然后还有注意命名,好的命名可以让你在敲代码时事半功倍~
以下是自己独自敲的代码,还是会有点小问题