c++----list模拟实现

目录

1. list的基本介绍

2. list的基本使用 

2.1 list的构造

用法示例 

2.2 list迭代器 

 用法示例

2.3. list容量(capacity)与访问(access)

用法示例

2.4 list modifiers 

用法示例 

2.5 list的迭代器失效 

3.list的模拟实现 

3.1 构造、析构

3.2 迭代器 

3.3 list modifiers 

4. list与vector的区别 

5.完整代码 


1. list的基本介绍

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2. list的底层是双向带头循环链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝后迭代。
4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

下图是list的底层结构。

从图中可以看出,list底层由一个双向带头循环链表构成。假设有一链表list<int> lt, 头节点为_head则lt.begin()指向_head->next, lt.end()指向_head。

2. list的基本使用 

2.1 list的构造

构造函数( (constructor))接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

用法示例 

void list_test1()
{list<string> lt(5, "xy");//n val构造for (auto e : lt){cout << e << " ";}cout << endl;list<string> llt(lt);//拷贝构造for (auto e : llt){cout << e << " ";}cout << endl;list<string> lltt(++lt.begin(), --lt.end());//迭代器区间构造for (auto e : lltt){cout << e << " ";}
}

2.2 list迭代器 

函数声明接口说明
begin +
end
返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin +
rend
返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的
reverse_iterator,即begin位置

 用法示例

void list_test2()
{list<int> lt{ 1,2,3,4,5};//这样构造很奇特for (auto e : lt){cout << e << " ";}cout << endl;list<int>::iterator it = lt.begin();//正向迭代器while (it != lt.end()){cout << *it << " ";it++;}cout << endl;list<int>::reverse_iterator  rit = lt.rbegin();//反向迭代器while (rit != lt.rend()){cout << *rit << " ";rit++;}cout << endl;
}

那么大家肯定会有一个疑问,之前的string,vector迭代器可以++,是因为他们的底层物理空间是连续的,但list底层可是双向带头循环链表啊,它的结构物理空间可是不连续的,我们++,不就错了吗?

不急,我们后面模拟实现的时候细讲。

2.3. list容量(capacity)与访问(access)

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size

返回list中有效节点的个数

front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

用法示例

void list_test3()
{list<int> lt{ 1,2,3,4,5 };//这样构造很奇特for (auto e : lt){cout << e << " ";}cout << endl;cout << "链表是否为空:   ";if (lt.empty())cout << "true" << endl;elsecout << "false" << endl;cout << "size: " << lt.size() << endl;cout << "Front Element: " << lt.front() << endl;cout << "Back Element: " << lt.back() << endl;lt.clear();cout << "已执行链表清空操作,链表是否为空:   ";if (lt.empty())cout << "true" << endl;elsecout << "false" << endl;}

2.4 list modifiers 

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

用法示例 

void list_test4()
{list<int> lt{ 1,2,3,4,5 };//这样构造很奇特for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(0);lt.push_back(0);lt.push_front(9);lt.push_front(9);for (auto e : lt){cout << e << " ";}cout << endl;lt.pop_back();lt.pop_front();for (auto e : lt){cout << e << " ";}cout << endl;list<int>::iterator it = lt.begin();while (it != lt.end()){if (*it == 5){it = lt.erase(it);break;}it++;}lt.insert(it, 999);for (auto e : lt){cout << e << " ";}cout << endl;
}

2.5 list的迭代器失效 

这里我们将迭代器理解为指针,list的迭代器失效是因为指针所指向的空间被销毁,导致指针变为野指针。list的底层是双向带头循环链表,因此list不存在插入导致迭代器失效的问题。list的迭代器失效出现在erase内,如果该节点被删除,空间已被销毁,那么就必须更新迭代器,否则迭代器失效。 

3.list的模拟实现 

list的模拟实现存在几个难点,首先是使用了大量的typedef,这会让人头晕眼花,其次是模板迭代器的构建。我们快来看看吧。

注意:list的迭代器由于list底层空间不连续的问题,因此要实现和vector一样的迭代器效果(即支持*it,it++)需要对操作符进行重载,所以要封装Node*。

list需要创建一个类内类Node,用list访问Node类的变量。

下面是ListNode类,类内包含双链表节点的三要素。

template<class T>
struct ListNode//节点的创建
{T _Date;ListNode<T>* _next;ListNode<T>* _prev;ListNode(const T& x=T())//节点的构造函数:_Date(x),_next(nullptr),_prev(nullptr){}
};

3.1 构造、析构

这里的构造函数为简易版本,只支持创建空链表。 

void list_init()//初始化每一个节点
{_head = new Node;//new调用Node的默认构造,不传参_head->_next = _head;_head->_prev = _head;
}
list()
{list_init();
}
list(list<T>& lt)//拷贝构造
{list_init();//创建头节点for (const auto& e : lt){push_back(e);}
}void swap(list<T>& tmp)
{std::swap(_head, tmp._head);
}//list& operator=(list lt)
list<T>& operator=(list<T> lt)
{swap(lt);return *this;
}
void clear()
{list<T>::iterator it = this->begin();while (it != end()){it = erase(it);}
}
~list()
{delete _head;_head = nullptr;
}

3.2 迭代器 

前面说,要对++等操作符进行重载,这时需要重新定义iterator类封装节点的指针,通过指针对节点进行操作。且iterator类需要支持普通对象与const对象的访问,因此需要定义成模板类。

模板类iterator 

template<class T,class Ref,class Ptr>
struct _list_iterator//迭代器本质就是指针,这里封装Node*,对Node的指针进行操作,重载++等操作符
{typedef ListNode<T> Node;typedef _list_iterator<T,Ref,Ptr> self;//typedef _list_iterator<T> self;Node* _node;//成员变量public:_list_iterator(Node* node)//构造函数,直接用node构建:_node(node){}//没有参数int ,前置++self& operator++()//重载++{_node = _node->_next;return *this;}self operator++(int)//后置++{Node* tmp = _node;_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}//返回临时对象,出函数即销毁,不可传引用self operator--(int)//后置--{Node* tmp = _node;_node = _node->_prev;return tmp;}Ptr operator->(){return &_node->_Date;}Ref operator*(){return _node->_Date;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}
};

list类内的迭代器函数 

typedef _list_iterator<T,T&,T*> iterator; //普通对象的迭代器
typedef _list_iterator<T,const T&,const T*> const_iterator;  //const对象的迭代器
iterator begin()//指向头节点的下一个
{return _head->_next;
}iterator end()//指向头节点
{return _head;
}const_iterator begin() const//指向头节点的下一个
{return _head->_next;
}const_iterator end() const//指向头节点
{return _head;
}

 这里模板参数有三个,分别是T,T&,T*,这是为什么呢?

T&:因为重载普通迭代器的*时,返回值需要设为引用类型,以便于外界可以更改。

 T*:重载->时,由于list的->逻辑不能自洽,list的重载->需要返回数据的地址

这里需要着重解释一下,如果是list<int>,那么重载->完全没有问题,但如果是list<Date>呢?

Node的数据域是自定义类型,又该怎么办呢?

因此我们返回Node.Date的地址,然后再解引用,如果是内置类型不受影响,如果是自定义类型,稍加控制就ok了。

我们来看看示例:

struct AA
{int _a1;int _a2;AA(int a1 = 1, int a2 = 1):_a1(a1), _a2(a2){}
};
void test_list5()
{list<AA> lt;AA aa1;lt.push_back(aa1);lt.push_back(AA());AA aa2(2, 2);lt.push_back(aa2);lt.push_back(AA(2, 2));list<AA>::iterator it = lt.begin();while (it != lt.end()){std::cout << (*it)._a1 << ":" << (*it)._a2 << std::endl;std::cout << it.operator*()._a1 << ":" << it.operator*()._a2 << std::endl;std::cout << it->_a1 << ":" << it->_a2 << std::endl;std::cout << it.operator->()->_a1 << ":" << it.operator->()->_a2 << std::endl;++it;}std::cout << std::endl;
}

Node的数据域存放的是AA类对象,Node* ptr,ptr->Date就是AA类的实例化对象,此时返回AA对象的地址,也就是AA* p,p->就可以访问AA类对象的成员了。 

3.3 list modifiers 

这里需要注意erase的迭代器失效问题。 

void push_back(const T& x=T())
{Node* node = new Node;Node* tail = _head->_prev;node->_Date = x;tail->_next = node;node->_next = _head;_head->_prev = node;node->_prev = tail;
}iterator insert(iterator pos,const T& x = T())//不存在迭代器失效问题
{Node* node = new Node;node->_Date = x;Node* cur = pos._node;Node* prev = cur->_prev;cur->_prev = node;node->_next = cur;node->_prev = prev;prev->_next = node;return node;
}iterator erase(iterator pos)//这里的pos有可能会产生迭代器失效问题
{Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;cur = nullptr;return next;//更新pos
}

4. list与vector的区别 

list与vector都是c++STL序列容器的重要组成部分,由于底层结构的不同,造成了他们的功能和特性有所不同,详见下表。 

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素
效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂
度为O(N),插入时有可能需要增容,增容:开辟新空
间,拷贝元素,释放旧空间,导致效率更低
任意位置插入和删除效率高,不
需要搬移元素,时间复杂度为
O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率
高,缓存利用率高
底层节点动态开辟,小节点容易
造成内存碎片,空间利用率低,
缓存利用率低
迭 代 器原生态指针对原生态指针(节点指针)进行封装
迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入
元素有可能会导致重新扩容,致使原来迭代器失效,删
除时,当前迭代器需要重新赋值否则会失效
插入元素不会导致迭代器失效,
删除元素时,只会导致当前迭代
器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随
机访问


 

5.完整代码 

template<class T>
struct ListNode//节点的创建
{T _Date;ListNode<T>* _next;ListNode<T>* _prev;ListNode(const T& x=T())//节点的构造函数:_Date(x),_next(nullptr),_prev(nullptr){}
};template<class T,class Ref,class Ptr>
struct _list_iterator//迭代器本质就是指针,这里封装Node*,对Node的指针进行操作,重载++等操作符
{typedef ListNode<T> Node;typedef _list_iterator<T,Ref,Ptr> self;//typedef _list_iterator<T> self;Node* _node;//成员变量public:_list_iterator(Node* node)//构造函数,直接用node构建:_node(node){}//没有参数int ,前置++self& operator++()//重载++{_node = _node->_next;return *this;}self operator++(int)//后置++{Node* tmp = _node;_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}//返回临时对象,出函数即销毁,不可传引用self operator--(int)//后置--{Node* tmp = _node;_node = _node->_prev;return tmp;}Ptr operator->(){return &_node->_Date;}Ref operator*(){return _node->_Date;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s){return _node == s._node;}
};template<class T>
class list
{typedef ListNode<T> Node;  //typedef
public:typedef _list_iterator<T,T&,T*> iterator; //普通对象的迭代器typedef _list_iterator<T,const T&,const T*> const_iterator;  //const对象的迭代器iterator begin()//指向头节点的下一个{return _head->_next;}iterator end()//指向头节点{return _head;}const_iterator begin() const//指向头节点的下一个{return _head->_next;}const_iterator end() const//指向头节点{return _head;}void list_init()//初始化每一个节点{_head = new Node;//new调用Node的默认构造,不传参_head->_next = _head;_head->_prev = _head;}list(){list_init();}list(list<T>& lt)//拷贝构造{list_init();//创建头节点for (const auto& e : lt){push_back(e);}}void swap(list<T>& tmp){std::swap(_head, tmp._head);}//list& operator=(list lt)list<T>& operator=(list<T> lt){swap(lt);return *this;}void clear(){list<T>::iterator it = this->begin();while (it != end()){it = erase(it);}}~list(){delete _head;_head = nullptr;}void push_back(const T& x=T()){Node* node = new Node;Node* tail = _head->_prev;node->_Date = x;tail->_next = node;node->_next = _head;_head->_prev = node;node->_prev = tail;}iterator insert(iterator pos,const T& x = T())//不存在迭代器失效问题{Node* node = new Node;node->_Date = x;Node* cur = pos._node;Node* prev = cur->_prev;cur->_prev = node;node->_next = cur;node->_prev = prev;prev->_next = node;return node;}iterator erase(iterator pos)//这里的pos有可能会产生迭代器失效问题{Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;cur = nullptr;return next;//更新pos}size_t size()const//返回size{int cnt = 0;list<int>::const_iterator it = begin();while (it != end()){cnt++;it++;};return cnt;}bool empty()const//判空{return _head ->_next== _head;}private:Node* _head;//成员变量为ListNode* 即访问节点的指针
};


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/782358.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题

def empty1(pri_data): hair [] #[‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’] voice [] #[‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’] sex [] #[‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’] for o…

leetcode.209.长度最小的子数组

题目 给定一个含有 n 个正整数的数组和一个正整数 s &#xff0c;找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组&#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0。 示例&#xff1a; 输入&#xff1a;s 7, nums [2,3,1,2,4,3] 输出&#…

sqli第24关二次注入

注入点 # Validating the user input........$username $_SESSION["username"];$curr_pass mysql_real_escape_string($_POST[current_password]);$pass mysql_real_escape_string($_POST[password]);$re_pass mysql_real_escape_string($_POST[re_password]);if($p…

wps斜线表头并分别打字教程

wps斜线表头怎么做并分别打字&#xff1a; 1、首先选中我们想要设置的表头。 2、接着右键选中它&#xff0c;点击“设置单元格格式” 3、然后点击上方“边框”选项卡。 4、随后选择图示的斜线&#xff0c;点击“确定” 5、设置完成后&#xff0c;我们只要在其中打字就可以在斜…

算法学习——LeetCode力扣图论篇2

算法学习——LeetCode力扣图论篇2 1020. 飞地的数量 1020. 飞地的数量 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个大小为 m x n 的二进制矩阵 grid &#xff0c;其中 0 表示一个海洋单元格、1 表示一个陆地单元格。 一次 移动 是指从一个陆地单元格走到另一个相…

优化选址问题 | 基于帝国企鹅算法求解工厂-中心-需求点三级选址问题含Matlab源码

目录 问题代码问题 "帝国企鹅算法"并不是一个广为人知的优化算法,可能是一个特定领域或者特定情境下提出的方法。不过,对于工厂-中心-需求点三级选址问题,它可能是一种启发式优化方法,用于在多个候选位置中选择最优的工厂、中心和需求点位置。 这类问题通常涉及…

HTML基本元素

文章目录 如何制作标题如何制作文字如何做粗体字检查我们程序码给输出文字添加属性 HTML 一个HTML标签包含着&#xff1a; 起始标签&#xff1a;它包含了元素的名字&#xff0c;夹在一对 <、>&#xff08;尖括号&#xff09;之间。它指明元素从何处开始生效。结束标签&am…

java数组与集合框架(二)-- 集合框架,Iterator迭代器,list

集合框架&#xff1a; 用于存储数据的容器。 Java 集合框架概述 一方面&#xff0c;面向对象语言对事物的体现都是以对象的形式&#xff0c;为了方便对多个对象的操作&#xff0c;就要对对象进行存储。另一方面&#xff0c;使用Array存储对象方面具有一些弊端&#xff0c;而…

构建高性能并发程序:学习并发性能调优与测试的关键技巧

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一个人虽可以走的更快&#xff0c;但一群人可以走的更远。 我是一名后…

【工控基础】UVW平台踩坑

前言 本文不讲原理&#xff0c;旨在会用&#xff0c;不踩坑。 一、UVW平台介绍 疑问&#xff1a; 如何理解可以以平台任意一点为中心进行旋转&#xff1f; 我们目前是以平台的旋转中心最为相机的原点坐标。 关于原理 目前&#xff0c;我们使用的是旋转标定&#xff0c;这个方…

python opencv之提取轮廓并拟合圆

图片存储地址为&#xff1a;C:\Users\Pictures\test.png&#xff0c;该图像图片背景是黑色的&#xff0c;目标区域是亮的&#xff0c;目标区域是两段圆弧和两段曲线构成的封闭区域&#xff0c;其中两段圆弧属于同一个圆&#xff0c;但在目标区域的相对位置&#xff0c;也就是不…

Qt实现对界面列表数据的局部刷新

在Qt中&#xff0c;可以使用QAbstractListModel类来创建自定义的ListModel&#xff0c;实现对界面列表数据的局部刷新。下面是一个示例代码&#xff0c;演示如何创建一个自定义的ListModel并实现局部刷新功能&#xff1a; #include <QGuiApplication> #include <QQmlA…

自定义SpringSecurity异常格式

今天发现spring的异常格式没有跟着mvc的错误格式走&#xff0c;场景是用户权限的时候。查了一下原来是springsecurity定义了一组filter作用在了mvc上层&#xff0c;因此需要处理一下错误格式。 处理前错误返回信息如下&#xff1a; 由于使用了多语言&#xff0c;因此错误格式也…

阿里云2核4G云服务器支持多少人同时在线?并发数计算?

阿里云2核4G服务器多少钱一年&#xff1f;2核4G配置1个月多少钱&#xff1f;2核4G服务器30元3个月、轻量应用服务器2核4G4M带宽165元一年、企业用户2核4G5M带宽199元一年。可以在阿里云CLUB中心查看 aliyun.club 当前最新2核4G服务器精准报价、优惠券和活动信息。 阿里云官方2…

计算机网络 - 基础篇总结

TCP/IP 网络模型有哪几层&#xff1f; 1.应用层 为用户提供应用功能 2.传输层 负责为应用层提供网络支持 使用TCP和UDP 当传输层的数据包大小超过 MSS&#xff08;TCP 最大报文段长度&#xff09; &#xff0c;就要将数据包分块&#xff0c;这样即使中途有一个分块丢失或损坏…

Linux内核之put_user与get_user实例用法(三十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

GPU-CPU-ARM-X86-RISC-CUDA

CPU更适合处理复杂逻辑运算和单线程任务&#xff0c;而GPU则更适合处理大规模并行计算任务。 CPU&#xff08;中央处理器&#xff09;通常具有较少的核心数量&#xff08;一般在2到16个之间&#xff09;&#xff0c;但每个核心的性能较强&#xff0c;擅长执行复杂的运算和逻辑…

HTTP/1.1 特性(计算机网络)

HTTP/1.1 的优点有哪些&#xff1f; 「简单、灵活和易于扩展、应用广泛和跨平台」 1. 简单 HTTP 基本的报文格式就是 header body&#xff0c;头部信息也是 key-value 简单文本的形式&#xff0c;易于理解。 2. 灵活和易于扩展 HTTP 协议里的各类请求方法、URI/URL、状态码…

专升本-云计算

被誉为第三次信息技术革命 什么是云计算&#xff1f; 云计算是一种商业的计算模式&#xff0c;它将任务分布在大量计算机构成的资源池上&#xff0c;用户可以按需通过网络存储空间&#xff0c;计算能力和信息等服务 云计算的产生和发展&#xff1a; 起源&#xff1a;上世纪6…

投稿指南【NO.12_9】【极易投中】核心期刊投稿(现代电子技术)

近期有不少同学咨询投稿期刊的问题&#xff0c;大部分院校的研究生都有发学术论文的要求&#xff0c;少部分要求高的甚至需要SCI或者多篇核心期刊论文才可以毕业&#xff0c;但是核心期刊要求论文质量高且审稿周期长&#xff0c;所以本博客梳理一些计算机特别是人工智能相关的期…