011——人体感应模块驱动开发(SR501)

目录

一、 模块简介

二、 工作原理

三、 软件及验证


一、 模块简介

        人体都有恒定的体温,一般在 37 度,所以会发出特定波长 10uM 左右的红外线,被动式红外探头就是靠探测人体发射的 10uM 左右的红外线而进行工作的。
        人体发射的 10uM 左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
        人体红外模块是一种能够检测人或动物发射的红外线而输出电信号的传感器。广泛应用于各种自动化控制装置中。比如常见的楼道自动开关、防盗报警等。如果有人在量程内运动, DO 引脚将会输出有效信号。市面上人体红外模块有很多,但其外形和原理都差不多,去年做STM32的项目时用过不少如下是一个典型的人体红外模式原理图:
 

实物长这个样子

        这个罩子是为了扩大检测范围的

之前用不是很灵敏这次试试在linux环境下的驱动程序灵敏度怎么样。

二、 工作原理

        通过跳线来设置是否可以重复触发,默认为 L。其中 L 表示不可重复, H 表示可重复。含义如下:
① 不可重复触发方式:
        感应到人体并输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。
② 重复触发方式:
        感应到人体后输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。可以通过电位器实现封锁时间和检测距离的调节:
① 调节检测距离:
        即有效距离的远近。调节距离电位器顺时针旋转,感应距离增大(约 7 米);反之,感应距离减小(约 3 米)。
② 封锁时间:
        感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。调节延时电位器顺时针旋转,感应延时加长(约 300S),反之,感应延时减短(约 0.5S)。

老师很贴心做了防呆设计

补充信息: 

        人进入其感应范围则输出高电平,人离开感应范围则自动延时关闭高电平,输出低电平

工作电压:DC4.5V~20V
静态电流:<50uA
电平输出:高3.3V/低0V0
延时时间:8s~200s(可调)
封锁时间:2.5s
触发方式:可重复触发/不可重复触发(通过跳线帽选择)感应角度:<100度锥角
电路板外形尺寸:32mm*24mm
工作温度:-15~+70°℃
感应透镜尺寸:直径23mm
小于120度锥角,7米以内

VCC:电源正极
GND:电源负极
OUT:信号输出
隐藏接口
RT:温度补偿接口(可接热敏电阻,在夏天当环境温度升高至30~32°℃,探测距离稍变短,温度补
偿可作一定的性能补偿。)
RL(CDS):光敏控制接口(可接光敏电阻,白天或者光线较强时控制模块不感应)

三、 软件及验证

        一番紧张刺激的配置网络后给大家推荐个新工具

        很好用谁用谁知道。

这样一个终端可以控制所有的机器。

 

模块有点不灵敏呢。

我们接线用了拓展资源板

  • GPIO4 ==> 第3组 ===> 起始编号 = 3*32 = 96

  • GPIO4_19的编号:96+19=115

#include <linux/module.h>
#include <linux/poll.h>#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>struct gpio_desc{int gpio;int irq;char *name;int key;struct timer_list key_timer;
} ;static struct gpio_desc gpios[2] = {{115, 0, "sr501", },
};/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_class;/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;struct fasync_struct *button_fasync;#define NEXT_POS(x) ((x+1) % BUF_LEN)static int is_key_buf_empty(void)
{return (r == w);
}static int is_key_buf_full(void)
{return (r == NEXT_POS(w));
}static void put_key(int key)
{if (!is_key_buf_full()){g_keys[w] = key;w = NEXT_POS(w);}
}static int get_key(void)
{int key = 0;if (!is_key_buf_empty()){key = g_keys[r];r = NEXT_POS(r);}return key;
}static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);int err;int key;if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))return -EAGAIN;wait_event_interruptible(gpio_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}static unsigned int gpio_drv_poll(struct file *fp, poll_table * wait)
{//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);poll_wait(fp, &gpio_wait, wait);return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}static int gpio_drv_fasync(int fd, struct file *file, int on)
{if (fasync_helper(fd, file, on, &button_fasync) >= 0)return 0;elsereturn -EIO;
}/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {.owner	 = THIS_MODULE,.read    = gpio_drv_read,.poll    = gpio_drv_poll,.fasync  = gpio_drv_fasync,
};static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{struct gpio_desc *gpio_desc = dev_id;int val;int key;printk("gpio_key_isr key %d irq happened\n", gpio_desc->gpio);val = gpio_get_value(gpio_desc->gpio);//printk("key_timer_expire key %d %d\n", gpio_desc->gpio, val);key = (gpio_desc->key) | (val<<8);put_key(key);wake_up_interruptible(&gpio_wait);kill_fasync(&button_fasync, SIGIO, POLL_IN);return IRQ_HANDLED;
}/* 在入口函数 */
static int __init gpio_drv_init(void)
{int err;int i;int count = sizeof(gpios)/sizeof(gpios[0]);printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);for (i = 0; i < count; i++){		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);}/* 注册file_operations 	*/major = register_chrdev(0, "100ask_gpio_key", &gpio_key_drv);  /* /dev/gpio_desc */gpio_class = class_create(THIS_MODULE, "100ask_gpio_key_class");if (IS_ERR(gpio_class)) {printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);unregister_chrdev(major, "100ask_gpio_key");return PTR_ERR(gpio_class);}device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "sr501"); /* /dev/sr501 */return err;
}/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数*/
static void __exit gpio_drv_exit(void)
{int i;int count = sizeof(gpios)/sizeof(gpios[0]);printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);device_destroy(gpio_class, MKDEV(major, 0));class_destroy(gpio_class);unregister_chrdev(major, "100ask_gpio_key");for (i = 0; i < count; i++){free_irq(gpios[i].irq, &gpios[i]);}
}/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */module_init(gpio_drv_init);
module_exit(gpio_drv_exit);MODULE_LICENSE("GPL");

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>static int fd;/** ./button_test /dev/sr501**/
int main(int argc, char **argv)
{int val;struct pollfd fds[1];int timeout_ms = 5000;int ret;int	flags;int i;/* 1. 判断参数 */if (argc != 2) {printf("Usage: %s <dev>\n", argv[0]);return -1;}/* 2. 打开文件 */fd = open(argv[1], O_RDWR);if (fd == -1){printf("can not open file %s\n", argv[1]);return -1;}while (1) {if (read(fd, &val, 1) > 0){if (val  == 0x100){printf("get button: %#x ,有人\n", val);}else{printf("get button: %#x ,无人\n", val);}}elseprintf("get button: -1\n");}close(fd);return 0;
}

        这个传感器给的高电平的值居然是100不是1,不对不是传感器的锅,可能是韦东山老师驱动的bug,应用层我做了对应修改,这几天把驱动都捋一下然后我集中改一下这些bug然后对项目做适配。站在巨人的肩膀上就好哈哈。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/781555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

架构师之路--Docker的技术学习路径

Docker 的技术学习路径 一、引言 Docker 是一个开源的应用容器引擎&#xff0c;它可以让开发者将应用程序及其依赖包打包成一个可移植的容器&#xff0c;然后在任何支持 Docker 的操作系统上运行。Docker 具有轻量级、快速部署、可移植性强等优点&#xff0c;因此在现代软件开…

Hides for Mac:应用程序隐藏工具

Hides for Mac是一款功能强大的应用程序隐藏工具&#xff0c;专为Mac用户设计。它能够帮助用户快速隐藏当前正在运行的应用程序窗口&#xff0c;保护用户的隐私和工作内容&#xff0c;避免不必要的干扰。 软件下载&#xff1a;Hides for Mac下载 Hides for Mac的使用非常简单直…

电脑换屏总结——关于我把电脑砸了这件事!

大家好&#xff0c;我是工程师看海&#xff0c;很高兴和各位一起分享我的原创文章&#xff0c;喜欢和支持我的工程师&#xff0c;一定记得给我点赞、收藏、分享哟。 加微信[chunhou0820]与作者进群沟通交流。 【淘宝】https://m.tb.cn/h.5PAjLi7?tkvmMLW43KO7q CZ3457 「运放秘…

vite+vue3使用模块化批量发布Mockjs接口

在Vue3项目中使用Mock.js可以模拟后端接口数据&#xff0c;方便前端开发和调试。下面是使用vitevue3使用模块化批量发布Mockjs接口的步骤&#xff1a; 1. 安装Mock.js 在Vue3项目的根目录下&#xff0c;使用以下命令安装Mock.js&#xff1a; npm install mockjs --save-dev …

项目亮点—动态线程池管理工具

问题 你是否在项目中使用线程池遇到过以下问题&#xff1f; 1.创建线程池核心参数不好评估&#xff0c;随着业务流量的波动&#xff0c;极有可能出现生产故障。 2.不支持优雅关闭&#xff0c;当项目关闭时&#xff0c;大量正在运行的线程池任务被丢弃。 3.不支持运行时监控…

Linux安装wine

#教程 一直以来&#xff0c;我运行双系统&#xff0c;有两个软件必须在window下运行&#xff0c;一个是wind金融终端&#xff0c;一个是通达信金融终端&#xff0c;现已解决这两个软件在linux&#xff08;debian系&#xff09;环境下运行问题&#xff0c;记录如下&#xff1a;…

WebGIS开发

1.准备工作 高德开发API注册账号&#xff0c;创建项目拿到key和密钥 高德key 2.通过JS API引入高德API <html><head><meta charset"utf-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><metaname&quo…

【3D-GS】Gaussian Splatting SLAM——基于3D Gaussian Splatting的全网最详细的解析

【3D-GS】Gaussian Splatting SLAM——基于3D Gaussian Splatting的定SLAM 3D-GS 与 Nerf 和 Gaussian Splatting1. 开山之作 Nerf2. 扛鼎之作 3D Gaussian Splatting2.1 什么是3D高斯?高斯由1D推广到3D的数学推导2.2 什么是光栅化?2.3 什么是Splatting?2.4 什么是交叉优化?…

AWS EC2 学习之: 使用 PuTTY 从 Windows 连接到 Linux 实例

启动您的实例之后&#xff0c;您可以连接到该实例&#xff0c;然后像使用您面前的计算机一样来使用它。 注意 启动实例后&#xff0c;需要几分钟准备好实例&#xff0c;以便您能连接到实例。检查您的实例是否通过了状态检查。您可以在 Instances 页上的 Status Checks 列中查…

什么是防火墙,部署防火墙有什么好处?

与我们的房屋没有围墙或界限墙一样&#xff0c;没有防护措施的计算机和网络将容易受到黑客的入侵&#xff0c;这将使我们的网络处于巨大的风险之中。因此&#xff0c;就像围墙保护我们的房屋一样&#xff0c;虚拟墙也可以保护和安全我们的设备&#xff0c;使入侵者无法轻易进入…

SAP Fiori开发中的JavaScript基础知识9 - 代码注释,严格模式,JSON

1 背景 本文将介绍JavaScript编程中的三个小知识点&#xff1a;也即代码注释&#xff0c;严格模式&#xff0c;JSON文件。 2 代码注释 JavaScript的代码注释方式如下&#xff1a; // Single line comment/* Multi line comment */3 严格模式 JavaScript的"strict mod…

0101支付安全-支付模块-项目实战

文章目录 一、信息安全的基础-机密性1 相关概念2 对称加密和非对称加密 二、身份认证三 摘要算法四、数字签名五、数字证书结语 在支付过程中&#xff0c;设计多方的敏感信息&#xff0c;那么安全尤为重要。下面先简单介绍下&#xff0c;相关概念。 一、信息安全的基础-机密性 …

解决GNU Radio+USRP实现OFDM收发在接收端QPSK星座图映射无“抖动”问题

文章目录 前言一、遇到的问题二、解决方案三、重新编译安装四、验证五、资源自取 前言 本文记录在 GNU RadioUSRP 实现 OFDM 收发时&#xff0c;在接收端 QPSK 星座图映射无“抖动”问题的解决方法&#xff0c; 一、遇到的问题 我遇到的问题是&#xff0c;现在搭建的 OFDM 模…

E5063A是德科技E5063A网络分析仪

181/2461/8938产品概述&#xff1a; Keysight E5063A 是一款低成本网络分析仪&#xff0c;可为测试天线、电缆、滤波器和 PCB 等简单无源元件提供优化的性能和功能。Keysight E5063A 为您的企业提供价格和性能之间的最佳平衡&#xff0c;以满足您的业务和技术要求。它利用行业…

安装和使用 Oracle Database 23c 容器鏡像

Oracle Database 23c 是 Oracle 最新的数据库版本&#xff0c;它带来了许多新特性和性能改进。 对于开发者来说&#xff0c;Oracle 提供了一个免费的开发者版&#xff0c; 可以通过 Docker 容器轻松安装和使用。以下是详细的安装和使用指南。 安装 Docker 在开始之前&#xff0…

2024 年多链代币开发对您的业务有何好处

2024 年&#xff0c;多链代币开发将成为寻求增强数字化影响力并释放区块链领域新机遇的企业的关键战略。通过利用多个区块链&#xff0c;公司可以显着提高其代币的可扩展性、互操作性和安全性。这种方法不仅提高了交易速度并降低了费用&#xff0c;还使企业能够利用更广泛的用户…

深度学习入门简单实现一个神经网络

实现一个三层神经网络 引言测试数据 代码 引言 今天我们实现一个简单的神经网络 俩个输入神经元 隐藏层两个神经元 一个输出神经元 激活函数我们使用sigmoid 优化方法使用梯度下降 我们前期准备是需要把这些神经元的关系理清楚 x1&#xff1a;第一个输入 x2&#xff1a;第二个…

C#手术麻醉系统源码 大型医院手麻系统4大需求是什么?

C#手术麻醉系统源码 大型医院手麻系统4大需求是什么&#xff1f; 手术麻醉临床信息系统有着完善的临床业务功能&#xff0c;能够涵盖整个围术期的工作&#xff0c;能够采集、汇总、存储、处理、展 现所有的临床诊疗资料。通过该系统的实施&#xff0c;能够规范手麻科的工作流程…

Matlab-写入mhd和raw医学图像处理格式文件

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 mhd和raw是什么&#xff1f; MHD&#xff08;MetaImage&#xff09;和RAW&#xff08;Raw Image Data&#xff09;是用于医学图像…

【测试工具】JMeter接口测试的简单使用

事先声明&#xff1a;博主的JMeter是3.3版本的&#xff0c;可能和最新版本的操作有些许差别 测试前的准备工作 1、先添加一个线程组&#xff1a;右击“测试计划”&#xff0c;点击“添加”—》“Threads(Users)”—》“线程组” 2、再添加一个HTTP请求&#xff0c;右击“线程…