AI学习-Pandas数据处理分析

文章目录

      • 1. Pandas概述
      • 2. Series用法
        • 2.1 Series的创建
        • 2.2 Series的取值
        • 2.3 Series的相关方法
      • 3. DataFrame用法
        • 3.1 DataFrame创建
        • 3.2 DataFrame取值
        • 3.3 DataFrame相关方法

1. Pandas概述

​ Pandas 是一个开源的数据分析处理库,它应用在数据科学、统计分析、机器学习等领域。其中丰富的数据结构、数据操作函数能够简化数据清洗、转换、探索性分析以及数据可视化等过程。

数据结构类型

​ Pandas包含两种数据结构

  • Series:带标签的一维数组
  • **DataFrame **:二维数组,类似于表格或关系库的表
名称描述
Series是一种一维的数据结构,可以看作是带标签的一维数组。每个元素都可以通过标签(索引)进行访问
Series 可以存储任何NumPy支持的数据类型,并且同样支持各种算术和数据处理方法
DataFrameDataFrame 是 Pandas 的主打数据结构,类似于表格或关系型数据库中的表,
它是一个二维带标签的数据结构,可以容纳多种数据类型(整数、浮点数、字符串、布尔值等)的列。
每一列都可以有不同的名称,并且每一行和每一列都有唯一的索引。

主要特性

特性~
标签化索引(Indexing and Selection)强大的标签化索引功能,使得数据选取和过滤方便,包括行选择、列选择、条件筛选等。
数据导入导出(DataImport/Export)Pandas 支持从多种文件格式(CSV、Excel、SQL、JSON、HDF5等)导入和导出数据,
极大地方便了数据预处理阶段的工作。
分组/聚合(Groupby / Aggregation)groupby 方法允许用户对数据集按指定列进行分组,并在每个分组上执行聚合操作
关联/合并(Merge, Join, Concatenate)提供了合并多个数据集的功能,支持内连接、外连接等多种数据库风格的表连接操作。
重塑(Reshaping and Pivot Tables)提供了重塑和透视表功能,便于数据重塑和多维度分析。

安装pandas

#使用conda进行安装
conda install pandas#使用pip进行安装
pip install pandas

2. Series用法

2.1 Series的创建
  • 函数说明以及示例
pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
参数描述
dataSeries的主要数据内容,可以是列表、NumPy数组、字典或其他Series。若为字典,则键作为索引,值作为数据
index可选参数,用于指定Series的索引,默认为从0开始递增的整数型索引。当数据为字典时,可省略此参数;非字典类型数据时,其长度应与data中的元素数量相匹配
dtype可选的数据类型,如果指定了该参数,Pandas会尝试将所有数据转换为此类型
name用于给Series指定一个名称,该名称在后续的数据处理和可视化展示时可用于标识
copy布尔值,默认为False。设置为True时,构造函数将会创建一个新的独立副本而非原始数据的一个视图
fastpath内部使用的优化选项,默认为False。在特殊情况下启用以提升性能,通常无需用户直接操作
#导入pandas
import pandas as pd 
#创建一维数组(带有标签)
data=pd.Series([4,3,5,6,1]) 
data#pandas 中两个重要的属性 values 和 index,
#values 是 Series 对象的原始数据。
#index 对 应了 Series 对象的索引对象#查看原属数据
data.values
#显示:array([4, 3, 5, 6, 1])#查看索引
data.inedx
#显示:RangeIndex(start=0, stop=5, step=1)

在这里插入图片描述

  • 使用列表创建Series,并自动分配默认索引
#创建一维数组
data = [1, 2, 3, 4, 5]
s = pd.Series(data)
  • 使用自定义索引创建Series:
#设置自定义索引
index = ['a', 'b', 'c', 'd', 'e'] 
data = [10, 20, 30, 40, 50] 
s = pd.Series(data, index=index)
#使用list创建自定义索引
data=pd.Series([4,3,2,1],index=list('abcd'))
  • 使用字典创建Series,字典的键成为Series的索引:
#设置自定义索引
data_dict = {'apple': 4, 'banana': 2, 'orange': 6}
s = pd.Series(data_dict)
  • 指定数据类型
#设置数据类型为float
data = [1, 2, 3, 4, 5] 
s = pd.Series(data, dtype='float')
  • 给Series命名
#设置seried名称
data = [1, 2, 3, 4, 5] 
s = pd.Series(data, name='xiu')
2.2 Series的取值

​ series可以像narray数组一样通过使用索引的方式,其索引分为位置索引标签索引。两种索引方式不同之处在于标签索引进行切片(获取其子集)时候 是左闭右闭,而位置索引是左闭右开。

index = ['a', 'b', 'c', 'd', 'e'] 
values = [10, 20, 30, 40, 50] 
data = pd.Series(values, index=index)
display('根据 key 获取:',data['a']) 
#切片且标签索引 显示 [a ~ d]包含d的数据  
display('切片获取:',data['a':'d'])
display('索引获取:',data[1]) 
#切片且位置索引 显示 [2 ~ 4)不包含4的数据  
display('索引切片:',data[2:4])

位置索引与标签索引有相同值 1,这时候 data[1]就不知道是按哪个 来获取,此时要使用 loc、iloc。

  • loc 表示的是标签索引
  • iloc 表示的是位置索引
data=pd.Series([5,3,2,5,9],index=[1,2,3,4,5])#如果是位置索引1 则为5 如果是标签索引则是2 默认下边不会报错,但是默认使用标签索引
data[1] #等价于
data.loc[1]#如果需要使用位置所以 用iloc
data.iloc[1]
2.3 Series的相关方法
  • mean 方法可以对某一列数据取平均数

  • min 方法获取最小值

  • max 方法获取最大值

  • std 方法获取标准差

  • sort_values方法排序,ascending=True 升序,False降序

  • data[condation]过滤条件

  • concat拼接

ages = pd.Series([20,24,30,35])
display('获取数据集中 Age 列的所有',ages) 
print('计算 Age 列的平均值:',ages.mean())
print('计算 Age 列的最大值:',ages.max())
print('计算 Age 列的最小值:',ages.min())
print('计算 Age 列的标准差:',ages.std()) 
display('对 Age 进行降序排序:',ages.sort_values(ascending=False))
display('筛选出 Age 大于平均值的数据:',ages[ages>ages.mean()])ser1=pd.Series([1,2,3],index=list('ABC'))
ser2=pd.Series([4,5,6],index=list('DEF'))
pd.concat([ser1,ser2])

3. DataFrame用法

3.1 DataFrame创建
pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=None)
参数描述
dataSeries的主要数据内容,可以是列表、NumPy数组、字典或其他Series。若为字典,则键作为索引,值作为数据
index可选参数,用于指定Series的索引,默认为从0开始递增的整数型索引。当数据为字典时,可省略此参数;非字典类型数据时,其长度应与data中的元素数量相匹配
dtype可选的数据类型,如果指定了该参数,Pandas会尝试将所有数据转换为此类型
columns用于生成结果使用的列标签。如果数据没有列标签,则默认为RangeIndex(0, 1, 2,…,n)。如果数据包含列标签,则将执行列选择。
copy布尔值,默认为False。设置为True时,构造函数将会创建一个新的独立副本而非原始数据的一个视图

使用两个Series构建DataFrame

#series 对象 一个population 一个area
population_dict={'beijing':3000,'guangzhou':1800,'shanghai':1200} 
area_dict={'beijing':300,'shanghai':180,'guangzhou':200}
population_series=pd.Series(population_dict) 
area_series=pd.Series(area_dict) citys=pd.DataFrame({'area':area_series,'population':population_series})

在这里插入图片描述

指定 index属性创建

data=pd.DataFrame([area_dict,population_dict],index=['area','population'])

指定列索引columns创建

pd.DataFrame(population_series,area_series,columns=['population','area'])

在这里插入图片描述

使用二维数组创建

#创建一个3行2列的二维矩阵,列索引为a,b 行索引为e,f,g
pd.DataFrame(np.random.randint(0,10,(3,2)),columns=list('ab'),index=list('efg'))

在这里插入图片描述

3.2 DataFrame取值

需要在DataFrame创建的对象中使用括号中指明要选择的列名(多个传递数组),同Series类似其也拥有对应的普通索引(标签索引)、位置索引。

#数据准备
population_dict={'beijing':3000,'guangzhou':1800,'shanghai':1200} 
area_dict={'beijing':300,'shanghai':180,'guangzhou':200}
data=pd.DataFrame([area_dict,population_dict],index=['area','population'])#取一列
data["beijing"]
#取多列
data[["beijing","shanghai"]]
  • loc 表示的是普通索引、输入行的名称(series里面叫做标签)
  • iloc 表示的是位置索引
#准备数据
data=pd.DataFrame(np.arange(12).reshape(3,4),index=list('abc'),columns=list('ABCD'))#默认获取所有行,只针对列进行选择
print('获取所有行,获取B列,使用普通索引获取:')
print(data.loc[:,'B'])
print('获取所有行,获取B列,使用位置索引获取:')
print(data.iloc[:,1])print('获取a行,获取B列,使用普通索引获取:')
print(data.loc['a','B'])
print('获取A行,获取B列,使用位置索引获取:')
print(data.iloc[0,1])# data.loc[${startRow}:${endRow},${startCloumn}:${endCloumn}]
print('获取所有行,获取BCD三列,使用普通索引获取:')
print(data.loc[:,'B':'D'])
print('获取所有行,获取BCD三列,使用位置索引获取:')
print(data.iloc[:,1:4])#获取指定行、指定列的数据
print('获取ab行且BCD三列,使用普通索引获取:')print(data.loc['a':'b','B':'D'])
print('获取ab行获取BCD三列,使用位置索引获取:')print(data.iloc[0:1,1:4])
3.3 DataFrame相关方法
  • 条件过滤
  • concat拼接
data=pd.DataFrame({'Name':['zs','lisi','ww'],
'Sno':['1001','1002','1003'],
'Sex':['man','woman','man'],
'Age':[17,18,19],
'Score':[80,97,95]
},columns=['name',Sno','Sex','Age','Score'],index=['zs','lisi','ww'])
display('数据集',data)#获取指定值
scores=data['Score']
display('输出数据中所有成绩大于平均值的记录',data[scores>scores.mean()])
display('获取成绩大于平均值得所有记录,只显示SnoAgeScore三列:',data[scores>scores.mean()].loc[:,['Sno','Age','Score']])#拼接
df1=pd.DataFrame(np.arange(12).reshape(3,4),index=list('abc'),columns=list('ABCD'))
df2=pd.DataFrame(np.arange(12).reshape(3,4),index=list('efg'),columns=list('EFGH'))           
pd.concat([df1,df2])               

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/781489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9.0-源码分析:Dubbo Remoting 层核心接口分析

dubbo-remoting 模块,该模块提供了多种客户端和服务端通信的功能。在 Dubbo 的整体架构设计图中,我们可以看到最底层红色框选中的部分即为 Remoting 层,其中包括了 Exchange、Transport和Serialize 三个子层次。这里我们要介绍的 dubbo-remot…

C++类继承继承5——构造函数与拷贝控制

构造函数与拷贝控制 和其他类一样,位于继承体系中的类也需要控制当其对象执行一系列操作时发生什么样的行为,这些操作包括创建、拷贝、移动、赋值和销毁。 如果一个类(基类或派生类)没有定义拷贝控制操作,则编译器将为它合成一个版本。当然…

手写简易操作系统(十七)--编写键盘驱动

前情提要 上一节我们实现了锁与信号量,这一节我们就可以实现键盘驱动了,访问键盘输入的数据也属于临界区资源,所以需要锁的存在。 一、键盘简介 之前的 ps/2 键盘使用的是中断驱动的,在当时,按下键盘就会触发中断&a…

乐理通识

2023 年搞了台雅马哈 61 键的电子琴,顺手看了下啊 B 的上的课程 《零基础自学音乐学乐理合集-第一季》,这里是部分笔记(给博客加点不一样的东西👀)。 简谱各部分一览 C 表示音名竖线为小节线 音名 完整钢琴键盘 88 键…

数据结构

一、栈 先进后出 二、队列 先进先出 三、数组 查询快,增加修改慢 四、链表 查询慢,增加修改慢 五、二叉树 节点: 查找二叉树 二叉查找树的特点 二叉查找树,又称二叉排序树或者二叉搜索树 每一个节点上最多有两个子节点 左子树上所…

Linux shell编程学习笔记43:cut命令

0 前言 在 Linux shell编程学习笔记42:md5sum 中,md5sum命令计算md5校验值后返回信息的格式是: md5校验值 文件名 包括两项内容,前一项是md5校验值 ,后一项是文件名。 如果我们只想要前面的md5 校验值&#xff0c…

视频监控联网平台的评价指标体系

目录 一、视频应用系统评价指标体系的设计思路 (一)、明确评价目标和原则 (二)、确定评价指标 (三)、收集和处理数据 (四)、建立评价模型 (五)、进行综…

哔哩哔哩直播姬有线投屏教程

1 打开哔哩哔哩直播姬客户端并登录(按下图进行操作) 2 手机用usb数据线连接电脑(若跳出安装驱动的弹窗点击确定或允许),usb的连接方式为仅充电(手机差异要求为仅充电),不同品牌手机要求可能不一样,根据实际的来 3 在投屏过程中不要更改usb的连接方式(不然电脑会死机需要重启) …

IDEA的Scala环境搭建

目录 前言 Scala的概述 Scala环境的搭建 一、配置Windows的JAVA环境 二、配置Windows的Scala环境 编写一个Scala程序 前言 学习Scala最好先掌握Java基础及高级部分知识,文章正文中会提到Scala与Java的联系,简单来讲Scala好比是Java的加强版&#x…

面试题:JVM的垃圾回收

一、GC概念 为了让程序员更专注于代码的实现,而不用过多的考虑内存释放的问题,所以,在Java语言中,有了自动的垃圾回收机制,也就是我们熟悉的GC(Garbage Collection)。 有了垃圾回收机制后,程序员只需要关…

ATTCK学习笔记

ATT&CK 前言知识 威胁情报:一般为网络流量中或者操作系统上观察到的能高度表明计算机被入侵的痕迹,例如某病毒的Hash值、服务器的IP地址等等。简单来说,威胁情报就像是当计算机被入侵时所表现出来的某种特征,我们将这些威胁…

文件操作(顺序读写篇)

1. 顺序读写函数一览 函数名功能适用于fgetc字符输入函数所有输入流fputc字符输出函数所有输出流fgets文本行输入函数所有输入流fputs文本行输出函数所有输出流fscanf格式化输入函数所有输入流fprintf格式化输出函数所有输出流fread二进制输入文件fwrite二进制输出文件 上面说…

【ReadPapers】A Survey of Large Language Models

LLM-Survey的llm能力和评估部分内容学习笔记——思维导图 思维导图 参考资料 A Survey of Large Language Models论文的github仓库

腾讯云优惠券领取方法大公开,省钱不再是难事

腾讯云—腾讯倾力打造的云计算品牌,以卓越科技能力助力各行各业数字化转型,为全球客户提供领先的云计算、大数据、人工智能服务,以及定制化行业解决方案和提供可靠上云服务,助力企业和开发者稳定上云! 然而&#xff0…

粉丝免费福利第一期-海浪型手机支架

🍁 作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主 📌 擅长领域:全栈工程师,大模型,爬虫、ACM算法 💒 公众号&#xff…

Vue系列-el挂载

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>el:挂载点</title> </head> <body&g…

基于单片机微波炉加热箱系统设计

**单片机设计介绍&#xff0c;基于单片机微波炉加热箱系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的微波炉加热箱系统设计是一个融合了硬件与软件技术的综合性项目。以下是对该设计概要的详细描述&#xf…

P15:PATH环境变量

为什么要配置环境变量 当我们打开DOS窗口&#xff0c;输入&#xff1a;javac&#xff0c;出现下面问题。 原因&#xff1a;windows操作系统在当前目录中无法找到javac命令文件。Windows操作系统是如何搜索硬盘上某一个命令&#xff1f; 首先从当前目录中搜索该命令如果当前目录…

OSCP靶场--Snookums

OSCP靶场–Snookums 考点(RFI信息收集数据库发现凭据bas64解码su切换用户/etc/passwd覆盖提权) 1.nmap扫描 ##┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.216.58 -sV -sC -Pn --min-rate 2500 -p- Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-30 03:39 E…

期货开户要找到适合自己的系统

物有一个生物圈&#xff0c;大鱼吃小鱼&#xff0c;小鱼吃虾。在期货市场这条生物圈里面&#xff0c;大部分人就是期货市场的虾子&#xff0c;是被吃的&#xff0c;所以必须成长起来&#xff0c;往更高一层走&#xff0c;到可以吃虾子的时候&#xff0c;就是挣钱的时候。学习不…