Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之七 简单图像浮雕效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之七 简单图像浮雕效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之七 简单图像浮雕效果

一、简单介绍

二、简单图像浮雕效果实现原理

三、简单图像浮雕效果案例实现简单步骤

四、注意事项:


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

二、简单图像浮雕效果实现原理

图像浮雕原理是通过对图像进行灰度变换,使得某些局部区域的像素值相对于周围像素值有一定的增加或减少,从而使得图像呈现出明显的浮雕感觉。

实现原理:

  • 灰度转换:首先,将彩色图像转换为灰度图像,以便后续处理。

  • 卷积操作:对灰度图像进行卷积操作,使用一个特定的浮雕卷积核进行滤波。这个卷积核会产生一组新的像素值。

  • 像素值调整:对于每个像素,将卷积操作后得到的像素值减去该像素在原始图像中的像素值,得到浮雕值。然后,根据浮雕值,将像素点的灰度值进行调整,使得局部区域的像素值相对于周围的像素值有一定的增加或减少。

  • 像素值映射:将处理后的像素值重新映射到0-255的灰度值范围内,生成浮雕效果的图像。

三、简单图像浮雕效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

"""
简单图像浮雕效果(1)将彩色图像转换为灰度图像。(2)对灰度图像进行卷积操作,使用卷积核进行滤波,得到一组新的像素值。卷积核的大小可以根据需要进行调整,通常采用3x3或5x5的大小。(3)对于每个像素,将卷积操作后得到的像素值减去该像素在原始图像中的像素值,得到浮雕值。(4)根据浮雕值,将像素点的灰度值进行调整,使得局部区域的像素值相对于周围的像素值有一定的增加或减少。(5)将处理后的像素值重新映射到0-255的灰度值范围内,生成浮雕效果的图像。"""import cv2
import numpy as npdef emboss_effect(img):"""浮雕效果处理:param img::return:"""# 将彩色图像转换为灰度图像gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 创建一个3x3的浮雕卷积核kernel = np.array([[0, -1, -1],[1, 0, -1],[1, 1, 0]])# 对灰度图像进行卷积操作embossed_image = cv2.filter2D(gray_image, -1, kernel)# 对卷积操作后的像素值进行调整,使得局部区域的像素值相对于周围的像素值有一定的增加或减少embossed_image = cv2.addWeighted(gray_image, 0.5, embossed_image, 0.5, 0)# 将处理后的像素值重新映射到0-255的灰度值范围内embossed_image = cv2.convertScaleAbs(embossed_image)return embossed_imagedef main():# 读取图像image = cv2.imread('Images/DogFace.jpg')# 设置窗口属性,并显示图片cv2.namedWindow("Dog", cv2.WINDOW_KEEPRATIO)cv2.imshow("Dog", image)# 应用浮雕效果embossed_image = emboss_effect(image)# 设置窗口属性,并显示图片cv2.namedWindow("Embossed Image", cv2.WINDOW_KEEPRATIO)cv2.imshow('Embossed Image', embossed_image)cv2.waitKey(0)cv2.destroyAllWindows()if __name__ == "__main__":main()

四、注意事项:

  1. 卷积核选择:浮雕效果的质量受到卷积核的影响。选择合适的卷积核能够得到更好的效果。

  2. 灰度图像处理:在进行浮雕效果处理之前,必须将彩色图像转换为灰度图像。这是因为浮雕效果通常只应用于单通道图像。

  3. 参数调整:可以通过调整权重参数来调整浮雕效果的强度。在 cv2.addWeighted() 函数中,权重参数可以用来调整原始图像和浮雕图像之间的混合程度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780739.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络七层模型之会话层:理解网络通信的架构(五)

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【豫都故郡·领航新篇】Springer独立出版 |第二届先进无人飞行系统国际会议(ICAUAS 2024)

会议简介 Brief Introduction 2024年第二届先进无人飞行系统国际会议(ICAUAS 2024) 会议时间:2024年6月14日-16日 召开地点:中国南昌 大会官网:ICAUAS 2024-2024 2nd International Conference on Advanced Unmanned Aerial Systems2024 2nd …

【C++】力扣-415-字符串相加(双指针,图例详解!!!)

目录 一、前言 二、字符串相加 三、共勉 一、前言 最近春招已经开始,看周围的同学都在投递一些大厂的实习,某为的手撕代码 --- 字符串相乘,某讯的手撕代码 --- 字符串相减等。 于是专门去 Leetcode 上搜索了一下,发现这类题目是面…

conda使用记录

linux 使用conda创建新一个新的python环境过程 conda create -n recommendation_env python3.8.18 # 指定python版本 conda env list # 查看所有的环境 conda activate recommendation_env # 激活创建的新环境 pip install flask # 安装依赖 或者 pip install flask版本号 或者…

脑机交互,屏幕是必须?No!让机器人发出激光光点实现脑机接口交互

一般说来,传统脑机接口(BCI)系统的交互过程依靠一个图形化的用户界面,不利于设备的便携性。而一种无屏幕的BCI可以通过让机器人在外界环境中发出刺激从而实现更直接的命令其中机器人使用激光光点凸显环境中的候选对象,而用户的目标则从脑电图…

跳跃游戏-java

题目描述: 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 解题思想: …

AIGC新潮流!手势灵动数字人视频、百变模特服装图、3D模型纹理一键生成

1、营销应用:AI生成生成带手势(手部动作)的数字人视频 (1)一个基于扩散模型的数字人生成框架,专注于生成具有全身动作的主播风格视频。该系统通过仅需一分钟的个人视频片段进行训练,便能自动生成具有精确躯干和手部动作的主播风格视频。 (2)定位:该框架定位于解决现…

docker环境配置过程中的常见问题

1、pull镜像问题 docker pull jenkins/jenkins:lts Using default tag: latest Trying to pull repository docker.io/library/centos ... Get https://registry-1.docker.io/v2/library/centos/manifests/latest: Get https://auth.docker.io/token?scoperepository%3Alibr…

自动驾驶-如何进行多传感器的融合

自动驾驶-如何进行多传感器的融合 附赠自动驾驶学习资料和量产经验:链接 引言 自动驾驶中主要使用的感知传感器是摄像头和激光雷达,这两种模态的数据都可以进行目标检测和语义分割并用于自动驾驶中,但是如果只使用单一的传感器进行上述工作…

数据处理库Pandas数据结构DataFrame

Dataframe是一种二维数据结构,数据以表格形式(与Excel类似)存储,有对应的行和列,如图3-3所示。它的每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享…

【机器学习之---数学】熵和交叉熵

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 熵和交叉熵 1. 熵 概率分布的熵可以被解释为与给定分布中的随机变量相关的不确定性或缺乏可预测性的度量。 我们还可以使用熵来定义数据源的信息内容。…

小程序UI设计规范,界面设计尺寸详解

作为互联网技术的重要组成部分,小程序在日常生活中发挥着越来越重要的作用。因此,了解和严格遵守小程序的 UI 设计标准非常重要,它不仅可以帮助我们在保证良好用户体验的同时优化小程序,还可以使我们的产品在竞争激烈的市场中占据…

零基础入门转录组数据分析——绘制差异火山图

零基础入门转录组数据分析——绘制差异火山图 差异分析的火山图(Volcano Plot)在生物信息学数据分析中,特别是在基因表达差异分析中,是一个非常直观和有用的工具。 本教程将从导入的数据结构开始,一步步带大家在R中绘制好看的火山图,最后对火山图进行解读,确保读者理解…

数字范围按位与

题目链接 数字范围按位与 题目描述 注意点 0 < left < right < 2^31 - 1包含 left 、right 端点 解答思路 返回区间内所有数字按位与的结果&#xff0c;所以区间内所有数字在某一位的值相同&#xff0c;则结果该位数字为该值&#xff0c;否则该位数字为0&#xf…

二、Java语法基础

1、Java语言的关键字、标识符及命名规范 1)java关键字 2)标识符 3)JAVA中的命名规范 包名的命名规范:域名.公司名称.项目名称.模块名称 类的命名规范:首字母大写,第二个单词的首字母大写,以此类推。 2、进制间的转换(二进制、十进制) 1)十进制->二进制 采用…

火狐浏览器垂直标签页对比 Sidebery vs Tab Center Reborn

Sidebery 链接 商店 评价 大而全&#xff0c;各种功能&#xff0c;以及相关的配置项&#xff0c;应有尽有&#xff1b;功能包括但不限于&#xff1a; 树形标签页、着色、面板、容器、快照最近关闭、标签页、历史 默认的配置就已经很好用了&#xff1b; 快捷键&#xff1a;F…

2024年安全员-C证证模拟考试题库及安全员-C证理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年安全员-C证证模拟考试题库及安全员-C证理论考试试题是由安全生产模拟考试一点通提供&#xff0c;安全员-C证证模拟考试题库是根据安全员-C证最新版教材&#xff0c;安全员-C证大纲整理而成&#xff08;含2024年…

TSINGSEE青犀多模型、算力调度与智能分析AI算法中台介绍及应用

TSINGSEE青犀AI算法中台是一款平台型产品&#xff0c;专注于提供各行业中小场景中部署解决方案。平台具备接入广、性能强、支持跨平台、芯片国产化等特点&#xff0c;可提供丰富的视图接入能力和智能分析能力。平台将不同类型、不同协议前端设备&#xff0c;支持通过不同网络环…

css简单动画实现

html源码 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>西安工程大学</title><link …

N9010A安捷伦N9010A信号分析仪

181/2461/8938产品概述&#xff1a; Keysight N9010A EXA 信号分析仪是最大限度提高生产线吞吐量的最快方法。从测量速度到代码兼容性&#xff0c;它让每一毫秒都很重要&#xff0c;并帮助您降低总体测试成本。 我们无法预测未来&#xff0c;但安捷伦可以利用我们面向未来的测…