Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions(IA-YOLO)

1、总体概述

基于深度学习的目标检测在常规条件的数据集可以获得不错的结果,但是在环境、场景、天气、照度、雾霾等自然条件的综合干扰下,深度学习模型的适应程度变低,检测结果也随之下降,因此研究在复杂气象条件下的目标检测方法就显得尤为重要。现有的方法在增强图像和目标检测之间很难做到平衡,有的甚至忽略有利于检测的信息。

本文为了解决上述问题,提出了IA-YOLO架构,该架构可以自适应的增强图像,以获得更好的检测结果。文中提出一个可微分的图像处理模块DIP,DIP使用轻量级的深度学习网络(CNN-PP)学习其参数,用以提高复杂天气状况下的目标检测性能。将DIP插入YOLOV3中,直接使用原有检测模型的分类和回归损失来弱监督DIP模块的参数,进而可以使用DIP模块进行图像增强。IA-YOLO代码tensorflow版本链接

2、IA-YOLO整体架构

高分辨率的图像(如1920*1080),缩放到低分辨率的图像(256*256),低分辨率的图像通过一个轻量级的CNN-PP模块,学习一组参数,文中在去雾过程中参数为15个,因此输出为【N,15】;高分辨率的图像,依次通过去雾、白平衡、Gamma增强、Tone、对比度Contrast、锐化Sharpen进行图像的增强操作,这个过程可以看作是图像的预处理阶段,预处理增强过后的图片,送入传统的YOLOV3检测器进行目标物体的检测,使用预测框和GT框的之间的分类和回归损失进行整个网络结构的监督,进而使得DIP模块学到自适应的参数。

3、可微过滤器介绍

3.1 Pixel-wise Filters

像素级的过滤器实际上就是对输入图像每个像素R、G、B三个通道的数值通过一定的映射,输出相对应的R、G、B三个通道的数值。文中提到四个Pixel-wise Filters,它们的映射关系函数如表所示。

由表可知,WB和Gamma都是通过简单的乘法以及幂指数变化来进行像素值的转换,因此,它们对于输入图像和需要学习的参数来说都是可微分的。

对于contrast的可微分设计,作者采用如下三个公式完成:

Lum(P_{i}) = 0.27r_{i} + 0.67g_{i}+ 0.06b_{i}              EnLum(P_{i}) =\frac{1}{2}(1-\cos (\pi\times (Lum(P_{i})) ))

En(P_{i}) = P_{i} \times \frac{EnLum(P_{i})}{Lum(P_{i}) }

对于Tone滤波器,作者将其设计成为一个单调分段函数,学习Tone filter需要使用L个参数,参数分别为\left \{ t_{0},t_{1},...,t_{L-1} \right \},tone曲线的点可表示为\left ( k/L,T_{k}/T_{L} \right ),其中T_{k} = \sum_{i=0}^{k-1}t_{l}。最终的映射函数为:

P_{o} = \frac{1}{T_{L}}\sum_{j=0}^{L-1}clip(L.P_{i}-j,0,1)t_{k}

3.2 Sharpen Filter

图像锐化可以凸显图像的细节信息,作者使用如下公式进行图像的锐化:

F(x,\lambda )=I(x)+\lambda (I(x)-Gau(I(x)))

其中,I(x)是输入图像,Gau(I(x))是对图像进行高斯变换,\lambda是一个大于0的缩放比例系数。

3.3 Defog Filter

去雾模型主要就是使用了大气散射模型,结合暗通道先验进行推算初来的结果,其中大气散射模型公式如下所示:

I(x) = J(x)t(x)+A(1-t(x))

其中A是全球大气光值,t(x)是转换参数,其定义如下:

t(x) = e^{-\beta }d(x)

去雾模型的具体过程参考之前的文章:Single Image Haze Removal Using Dark Channel Prior(暗通道先验)

4、CNN-PP模块

由前述网络的整体框架可知,CNN-PP是一个轻量级的全卷积网络,其输入是一个低分辨率的256*256图像,输出是一个【N,15】的向量,网络的具体结构可以看文中具体描述:

作者使用tensorflow实现的具体代码如下:

def extract_parameters(net, cfg, trainable):output_dim = cfg.num_filter_parameters# net = net - 0.5min_feature_map_size = 4print('extract_parameters CNN:')channels = cfg.base_channelsprint('    ', str(net.get_shape()))net = convolutional(net, filters_shape=(3, 3, 3, channels), trainable=trainable, name='ex_conv0',downsample=True, activate=True, bn=False)net = convolutional(net, filters_shape=(3, 3, channels, 2*channels), trainable=trainable, name='ex_conv1',downsample=True, activate=True, bn=False)net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv2',downsample=True, activate=True, bn=False)net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv3',downsample=True, activate=True, bn=False)net = convolutional(net, filters_shape=(3, 3, 2*channels, 2*channels), trainable=trainable, name='ex_conv4',downsample=True, activate=True, bn=False)net = tf.reshape(net, [-1, 4096])features = ly.fully_connected(net,cfg.fc1_size,scope='fc1',activation_fn=lrelu,weights_initializer=tf.contrib.layers.xavier_initializer())filter_features = ly.fully_connected(features,output_dim,scope='fc2',activation_fn=None,weights_initializer=tf.contrib.layers.xavier_initializer())return filter_features

5、训练流程

作者在构建数据集的时候需要区分是雾天数据还是低照度数据,训练的每一个batch数据,其中的每一张图片有\frac{2}{3}的几率随机加上随机雾或者随机亮度变化,这样可以使得模型对于雾天或者低照度环境有更大的适应性。由于在训练过程中随机生成雾天图像会让整个训练时长成倍增加,因此,作者在线下完成雾天图像的生成。

其中雾天生成数据的主要代码如下所示:存疑的点是td = math.exp(-beta * d)这个公式,按照公式和自身理解,感觉应该是td = math.exp(-beta )d

def AddHaz_loop(img_f, center, size, beta, A):(row, col, chs) = img_f.shapefor j in range(row):for l in range(col):d = -0.04 * math.sqrt((j - center[0]) ** 2 + (l - center[1]) ** 2) + sizetd = math.exp(-beta * d)img_f[j][l][:] = img_f[j][l][:] * td + A * (1 - td)return img_f

6、实验结果

雾天检测效果:

低照度检测结果:

消融试验针对不同的filter进行的对比,可以看到具体结果如下:

 总体来说,IA-YOLO使用可微分的filter,使得图像在进入目标检测器之前进行增强操作,有效提高了最终的目标检出性能。

——END——

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779493.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

警务数据仓库的实现

目录 一、SQL Server 2008 R2(一)SQL Server 的服务功能(二)SQL Server Management Studio(三)Microsoft Visual Studio 二、创建集成服务项目三、配置“旅馆_ETL”数据流任务四、配置“人员_ETL”数据流任…

k8s安装traefik作为ingress

一、先来介绍下Ingress Ingress 这个东西是 1.2 后才出现的,通过 Ingress 用户可以实现使用 nginx 等开源的反向代理负载均衡器实现对外暴露服务,以下详细说一下 Ingress,毕竟 traefik 用的就是 Ingress 使用 Ingress 时一般会有三个组件: …

基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。

演示视频: 基于SSM的高校普法系统(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…

inkscape中文版本 G代码生成器(支持中英文及数字)使用

inkscape G代码生成器(支持中英文及数字)使用 1 inkscape安装1. 界面介绍2. 基本操作3. 图形编辑4. 图层管理5. 文件操作6. 高级功能7. 学习资源 2 laserengraver插件安装3 inkscape 使用candle 验证G代码效果 1 inkscape安装 跟着提示默认按键即可。 软…

HTML网站的概念

目录 前言: 1.什么是网页: 2.什么是网站: 示例: 3.服务器: 总结: 前言: HTML也称Hyper Text Markup Language,意思是超文本标记语言,同时HTML也是前端的基础&…

Linux 环境安装Nginx—源码和Dokcer两种安装方式

一、源代码编译安装Nginx 1.下载最新nginx源码 以nginx-1.25.3.tar.gz为例: 可以使用命令(联网):curl -O http://nginx.org/download/nginx-1.25.3.tar.gz或在官网下载.tar.gz 2.解压缩 tar -zxvf nginx-1.25.3.tar.gz cd nginx-1.25.3/ 3.安装依赖…

HarmonyOS实战开发-实现自定义弹窗

介绍 本篇Codelab基于ArkTS的声明式开发范式实现了三种不同的弹窗,第一种直接使用公共组件,后两种使用CustomDialogController实现自定义弹窗,效果如图所示 相关概念 AlertDialog:警告弹窗,可设置文本内容和响应回调…

【javaWeb 第八篇】后端-Mybatis(万字详细学习)

Mybatis框架 前言MybatisMybatis入门配置SQL提示JDBC数据库连接池lombok Mybatis基础操作日志输出Mybatis的动态SQL 前言 这篇是作者学习数据持久层框架Mybatis的学习笔记,希望对大家有所帮助,希望大家能够与作者交流讨论 Mybatis Mybatis是一款优秀的…

Android 开发 Spinner setSelection 不起作用

问题 Android 开发 Spinner setSelection 不起作用 详细问题 笔者进行Android项目开发,根据上一个页面用户选择数据,显示当前页面Spinner选项,调用 Spinner setSelection 不起作用。 相关java代码 spinner.setAdapter(adapter); …

uniapp对接萤石云 实现监控播放、云台控制、截图、录像、历史映像等功能

萤石云开发平台地址:文档概述 萤石开放平台API文档 (ys7.com) 萤石云监控播放 首先引入萤石云js js地址:GitHub - Ezviz-OpenBiz/EZUIKit-JavaScript-npm: 轻应用npm版本,降低接入难度,适配自定义UI,适配主流框架 vi…

C语言例4-35:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡、问鸡翁、鸡母和鸡雏各几何?

方法一&#xff1a; 代码如下&#xff1a; //鸡翁一&#xff0c;值钱五&#xff1b;鸡母一&#xff0c;值钱三&#xff1b;鸡雏三&#xff0c;值钱一。百钱买百鸡、问鸡翁、鸡母和鸡雏各几何&#xff1f; //方法一&#xff1a; #include<stdio.h> int main(void) {int x…

简易挛生分拣系统设计

1 工效组合展示 2 方案规划设计 3 数字挛生建模 基础建模、动画设计、模型导出 4 软件体系架构 5 Web交互设计 5.1 页面架构 5.2 初始构造 5.3 模型运用 5.4 WS通信 5.5 运行展现 6 服务支撑编码 6.1 整体调度 6.2 WS服务 6.3 C/S通信 7 系统级调试完善

李雅普诺夫函数

李雅普诺夫函数是一种用于描述动力系统稳定性的数学工具。它在动力系统和控制理论中具有广泛的应用&#xff0c;尤其是在研究非线性系统的稳定性方面。 李雅普诺夫函数通常用于证明动力系统在一些条件下是稳定的。一个李雅普诺夫函数是一个实数值函数&#xff0c;通常表示为 V…

使用mybatis的@Interceptor实现拦截sql

一 mybatis的拦截器 1.1 拦截器介绍 拦截器是一种基于 AOP&#xff08;面向切面编程&#xff09;的技术&#xff0c;它可以在目标对象的方法执行前后插入自定义的逻辑。 1.2 语法介绍 1.注解Intercepts Intercepts({Signature(type StatementHandler.class, method “…

【Java - 框架 - Lombok】(2) SpringBoot整合Lombok完成日志的创建使用 - 快速上手;

"SpringBoot"整合"Lombok"完成日志的创建使用 - 快速上手&#xff1b; 环境 “Java"版本"1.8.0_202”&#xff1b;“Lombok"版本"1.18.20”&#xff1b;“Spring Boot"版本"2.5.9”&#xff1b;“Windows 11 专业版_22621…

华硕ROG幻X笔记本GZ301VV原厂OEM预装Win11系统安装包下载

ASUS华硕幻X电脑原装出厂Windows11系统&#xff0c;恢复出厂开箱状态系统 链接&#xff1a;https://pan.baidu.com/s/1RkPr5IscTUolYJVUrxTyhQ?pwdhob2 提取码&#xff1a;hob2 适用型号&#xff1a;GZ301VV、GZ301VU、GZ301VF 原装出厂系统自带所有驱动、出厂主题壁纸、系统…

翔云身份证实名认证接口-PHP调用方法

网络平台集成实名认证接口&#xff0c;是顺应当下网络实名制规定&#xff0c;有效规避法律风险。互联网平台若没有实名认证功能&#xff0c;那么便无法保证网民用户身份的真实性&#xff0c;很有可能被虚假用户攻击&#xff0c;特别是在当网络平台产生垃圾信息乃至是违法信息时…

springmvc自定义http请求状态码

1.背景 在做微信支付后回调时,微信要求: 接收成功&#xff1a; HTTP应答状态码需返回200或204&#xff0c;无需返回应答报文。 接收失败&#xff1a; HTTP应答状态码需返回5XX或4XX&#xff0c;同时需返回应答报文 微信通知文档:支付通知 - H5支付 | 微信支付商户文档中心 …

Flink CDC 同步数据到Doris

Flink CDC 同步数据到Doris Flink CDC 是基于数据库日志 CDC(Change Data Capture)技术的实时数据集成框架,支持了全增量一体化、无锁读取、并行读取、表结构变更自动同步、分布式架构等高级特性。配合 Flink 优秀的管道能力和丰富的上下游生态,Flink CDC 可以高效实现海量…

《VideoMamba》论文笔记

原文链接&#xff1a; [2403.06977] VideoMamba: State Space Model for Efficient Video Understanding (arxiv.org) 原文笔记 What&#xff1a; VideoMamba: State Space Model for Efficient Video Understanding 作者探究Mamba模型能否用于VideoUnderStanding作者引入…