实战 | 微调训练TrOCR识别弯曲文本

导  读

    本文主要介绍如何通过微调训练TrOCR实现弯曲文本识别。

背景介绍

    TrOCR(基于 Transformer 的光学字符识别)模型是性能最佳的 OCR 模型之一。在我们之前的文章中,我们分析了它们在单行打印和手写文本上的表现。

    TrOCR—基于Transformer的OCR入门

    然而,与任何其他深度学习模型一样,它们也有其局限性。TrOCR 在处理开箱即用的弯曲文本时表现不佳。本文将通过在弯曲文本数据集上微调 TrOCR 模型,使 TrOCR 系列更进一步。

图片

实现步骤

    从上一篇文章中我们知道TrOCR无法识别弯曲和垂直图像上的文本。这些图像是 SCUT-CTW1500 数据集的一部分。我们将在此数据集上训练 TrOCR 模型,并再次运行推理来分析结果。这将使我们全面了解针对不同用例可以将 TrOCR 模型的边界拓展到什么程度。

    我们将使用 Hugging Face Trainer API 来训练模型。要完成整个过程,必须遵循以下步骤:

    • 准备并分析弯曲文本图像数据集。

    • 从 Hugging Face 加载 TrOCR Small Printed 模型。

    • 将拥抱脸部序列初始化为序列训练器 API。

    • 定义评估指标

    • 训练模型并运行推理。

    弯曲文本数据集

    SCUT-CTW1500 数据集(以下简称 CTW1500)包含数千张弯曲文本和野外文本的图像。

    原始数据集可在官方 GitHub 存储库中获取。

https://github.com/Yuliang-Liu/Curve-Text-Detector

    这包括训练集和测试集。只有训练集包含 XML 格式的标签。因此,我们将训练集分为不同的训练和验证子集。

    最终数据集包含 6052 个训练样本和 1651 个验证样本。每个图像的标签都存在于文本文件中,并以换行符分隔。 

    让我们检查数据集中的一些图像及其文本标签。

图片

图片

    从上图中可以看出一些事情。除了弯曲的文本图像之外,数据集还包含模糊和朦胧的图像。这种现实世界的图像变化给深度学习模型带来了挑战。了解如此多样化的数据集中图像和文本的特征对于任何 OCR 模型的最先进性能至关重要。这对 TrOCR 模型提出了一个有趣的挑战,自然地,经过训练,它在此类图像上的表现会明显更好。

    微调弯曲文本上的 TrOCR

    让我们进入本文的技术方面。从这里开始,我们将详细讨论TrOCR训练过程的代码。 

    【1】安装并导入所需的库

    第一步是安装所有必需的库。

!pip install -q transformers!pip install -q sentencepiece!pip install -q jiwer!pip install -q datasets!pip install -q evaluate!pip install -q -U accelerate  !pip install -q matplotlib!pip install -q protobuf==3.20.1!pip install -q tensorboard

    其中,一些关键概念:

图片

    接下来,我们导入所有必需的库和包。​​​​​​​

import osimport osimport torchimport evaluateimport numpy as npimport pandas as pdimport glob as globimport torch.optim as optimimport matplotlib.pyplot as pltimport torchvision.transforms as transforms  from PIL import Imagefrom zipfile import ZipFilefrom tqdm.notebook import tqdmfrom dataclasses import dataclassfrom torch.utils.data import Datasetfrom urllib.request import urlretrievefrom transformers import (    VisionEncoderDecoderModel,    TrOCRProcessor,    Seq2SeqTrainer,    Seq2SeqTrainingArguments,    default_data_collator)

    上述代码块中的一些重要的导入语句是:

图片

    现在,设置种子以实现不同运行的可重复性并定义计算设备。​​​​​​​

def seed_everything(seed_value):    np.random.seed(seed_value)    torch.manual_seed(seed_value)    torch.cuda.manual_seed_all(seed_value)    torch.backends.cudnn.deterministic = True    torch.backends.cudnn.benchmark = False seed_everything(42) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    【2】下载并提取数据集

    下一个代码块包含一个帮助函数,用于下载 CTW1500 数据并提取它。​​​​​​​

def download_and_unzip(url, save_path):    print(f"Downloading and extracting assets....", end="")      # Downloading zip file using urllib package.    urlretrieve(url, save_path)      try:        # Extracting zip file using the zipfile package.        with ZipFile(save_path) as z:            # Extract ZIP file contents in the same directory.            z.extractall(os.path.split(save_path)[0])          print("Done")      except Exception as e:        print("\nInvalid file.", e)  URL = r"https://www.dropbox.com/scl/fi/vyvr7jbdvu8o174mbqgde/scut_data.zip?rlkey=fs8axkpxunwu6if9a2su71kxs&dl=1"asset_zip_path = os.path.join(os.getcwd(), "scut_data.zip") # Download if asset ZIP does not exist.if not os.path.exists(asset_zip_path):    download_and_unzip(URL, asset_zip_path)

    提取模型后数据集结构将如下所示。​​​​​​​

scut_data/├── scut_train├── scut_test├── scut_train.txt└── scut_test.txt

    数据被提取到scut_data目录中。它包含保存训练和验证图像的 scut_train和子目录。scut_test这两个文本文件包含以下格式的注释。​​​​​​​

006052.jpg  ty Starts with Education006053.jpg  Cardi's006054.jpg  YOU THE BUSINESS SIDE OF GREEN006055.jpg  hat is...

    每行包含一个图像文件名,图像中的文本以空格分隔。文本文件中的行数与图像文件夹中的样本数相同。图像中的文本和图像文件名由第一个空格分隔。图像文件名不能包含任何空格,否则将被视为文本的一部分。

    【3】定义配置

    在开始训练部分之前,我们先定义训练、数据集和模型配置。​​​​​​​

@dataclass(frozen=True)class TrainingConfig:    BATCH_SIZE:    int = 48    EPOCHS:        int = 35    LEARNING_RATE: float = 0.00005 @dataclass(frozen=True)class DatasetConfig:    DATA_ROOT:     str = 'scut_data' @dataclass(frozen=True)class ModelConfig:    MODEL_NAME: str = 'microsoft/trocr-small-printed'

    该模型将使用 48 的批量大小进行 35 个 epoch 的训练。优化器的学习率设置为 0.00005。较高的学习率会使训练过程不稳定,从而从一开始就导致较高的损失。

   此外,我们还定义了根数据集目录和我们将使用的模型。TrOCR Small Printed 模型将进行微调,因为它根据该数据集的实验展示了最佳性能。

    【4】可视化一些样本

    让我们可视化下载数据集中的一些图像及其文件名。​​​​​​​

def visualize(dataset_path):    plt.figure(figsize=(15, 3))    for i in range(15):        plt.subplot(3, 5, i+1)        all_images = os.listdir(f"{dataset_path}/scut_train")        image = plt.imread(f"{dataset_path}/scut_train/{all_images[i]}")        plt.imshow(image)        plt.axis('off')        plt.title(all_images[i].split('.')[0])    plt.show()  visualize(DatasetConfig.DATA_ROOT)

图片

    【5】准备数据集

    标签以文本文件格式存在。为了更顺利地准备数据加载器,需要将它们修改为更简单的格式。让我们将训练和测试文本文件转换为 Pandas DataFrame。​​​​​​​

train_df = pd.read_fwf(    os.path.join(DatasetConfig.DATA_ROOT, 'scut_train.txt'), header=None)train_df.rename(columns={0: 'file_name', 1: 'text'}, inplace=True)test_df = pd.read_fwf(    os.path.join(DatasetConfig.DATA_ROOT, 'scut_test.txt'), header=None)test_df.rename(columns={0: 'file_name', 1: 'text'}, inplace=True)

    现在,file_name 列包含与图像对应的所有文件名,text 列包含图像中的文本。

图片

    下一步是定义增强/数据扩充。​​​​​​​

# Augmentations.train_transforms = transforms.Compose([    transforms.ColorJitter(brightness=.5, hue=.3),    transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),])

    我们将ColorJitter和应用于GaussianBlur图像。无需对图像应用任何翻转旋转,因为原始数据集中已经有足够的可变性。

    准备数据集的最佳方法是编写自定义数据集类。这使我们能够更好地控制输入。以下代码块定义了一个CustomOCRDataset用于准备数据集的类。​​​​​​​

class CustomOCRDataset(Dataset):    def __init__(self, root_dir, df, processor, max_target_length=128):        self.root_dir = root_dir        self.df = df        self.processor = processor        self.max_target_length = max_target_length      def __len__(self):        return len(self.df)      def __getitem__(self, idx):        # The image file name.        file_name = self.df['file_name'][idx]        # The text (label).        text = self.df['text'][idx]        # Read the image, apply augmentations, and get the transformed pixels.        image = Image.open(self.root_dir + file_name).convert('RGB')        image = train_transforms(image)        pixel_values = self.processor(image, return_tensors='pt').pixel_values        # Pass the text through the tokenizer and get the labels,        # i.e. tokenized labels.        labels = self.processor.tokenizer(            text,            padding='max_length',            max_length=self.max_target_length        ).input_ids        # We are using -100 as the padding token.        labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]        encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}        return encoding

    该 __init__()方法接受根目录路径、DataFrame、TrOCR 处理器和最大标签长度作为参数。

    该 __getitem__()方法首先从磁盘读取标签和图像。然后它通过变换传递图像以应用增强。TrOCRProcessor 以 PyTorch 张量格式返回标准化像素值。接下来,文本标签通过分词器传递。如果标签短于 128 个字符,则会用 -100 填充到长度 128。如果长于 128 个字符,则会截断字符。最后,它以字典的形式返回像素值和标签。

    在创建训练集和验证集之前,需要初始化 TrOCRProcessor,以便将其传递给数据集类。​​​​​​​

processor = TrOCRProcessor.from_pretrained(ModelConfig.MODEL_NAME)train_dataset = CustomOCRDataset(    root_dir=os.path.join(DatasetConfig.DATA_ROOT, 'scut_train/'),    df=train_df,    processor=processor)valid_dataset = CustomOCRDataset(    root_dir=os.path.join(DatasetConfig.DATA_ROOT, 'scut_test/'),    df=test_df,    processor=processor)

    微调 TrOCR 模型的数据集准备过程到此结束。

   【6】准备 TrOCR 小型打印模型

    该类VisionEncoderDecoderModel使我们能够访问所有 TrOCR 模型。该from_pretrained()方法接受存储库名称来加载预训练模型。​​​​​​​

model = VisionEncoderDecoderModel.from_pretrained(ModelConfig.MODEL_NAME)model.to(device)print(model)# Total parameters and trainable parameters.total_params = sum(p.numel() for p in model.parameters())print(f"{total_params:,} total parameters.")total_trainable_params = sum(    p.numel() for p in model.parameters() if p.requires_grad)print(f"{total_trainable_params:,} training parameters.")

    该模型包含 6150 万个参数。将对所有参数进行微调,以便对它们进行训练。

    模型准备最重要的方面之一是模型配置。下面讨论这些配置。​​​​​​​

# Set special tokens used for creating the decoder_input_ids from the labels.model.config.decoder_start_token_id = processor.tokenizer.cls_token_idmodel.config.pad_token_id = processor.tokenizer.pad_token_id# Set Correct vocab size.model.config.vocab_size = model.config.decoder.vocab_sizemodel.config.eos_token_id = processor.tokenizer.sep_token_id  model.config.max_length = 64model.config.early_stopping = Truemodel.config.no_repeat_ngram_size = 3model.config.length_penalty = 2.0model.config.num_beams = 4

    预训练的 TrOCR 模型带有自己的一组预定义配置。然而,为了微调模型,我们将覆盖其中的一些内容,其中包括标记 ID、词汇表大小以及序列结束标记。

    此外,提前停止设置为True。这确保了如果模型指标在连续几个时期没有改善,则训练将停止。

    【7】优化器和评估指标

    为了优化模型权重,我们选择权重衰减为 0.0005 的 AdamW 优化器。​​​​​​​

optimizer = optim.AdamW(    model.parameters(), lr=TrainingConfig.LEARNING_RATE, weight_decay=0.0005)

    评估指标将是 CER(字符错误率)。​​​​​​​

cer_metric = evaluate.load('cer')  def compute_cer(pred):    labels_ids = pred.label_ids    pred_ids = pred.predictions      pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)    labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id    label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)      cer = cer_metric.compute(predictions=pred_str, references=label_str)      return {"cer": cer}

    无需进一步详细说明,CER 基本上是模型未正确预测的字符数。CER 越低,模型的性能越好。

    请注意,我们在 CER 计算中跳过填充标记,因为我们不希望填充标记影响模型的性能。

    【8】TrOCR 的训练和验证

    训练开始之前必须初始化训练参数。

training_args = Seq2SeqTrainingArguments(    predict_with_generate=True,    evaluation_strategy='epoch',    per_device_train_batch_size=TrainingConfig.BATCH_SIZE,    per_device_eval_batch_size=TrainingConfig.BATCH_SIZE,    fp16=True,    output_dir='seq2seq_model_printed/',    logging_strategy='epoch',    save_strategy='epoch',    save_total_limit=5,    report_to='tensorboard',    num_train_epochs=TrainingConfig.EPOCHS)

    正在使用 FP16 训练,因为它使用更少的 GPU 内存,并且还允许我们使用更高的批量大小。此外,日志记录和模型保存策略是基于纪元的。所有报告都将记录到张量板上。

    这些训练参数将与其他所需参数一起传递给训练器 API。

# Initialize trainer.trainer = Seq2SeqTrainer(    model=model,    tokenizer=processor.feature_extractor,    args=training_args,    compute_metrics=compute_cer,    train_dataset=train_dataset,    eval_dataset=valid_dataset,    data_collator=default_data_collator)

    训练过程可以通过调用训练器对象的train()方法来开始。

res = trainer.train()
Epoch Training Loss Validation Loss Cer1 3.822000  2.677871  0.6877392 2.497100  2.474666  0.6908003 2.180700  2.336284  0.627641...33  0.146800  2.130022  0.50420934  0.145800  2.167060  0.51109535  0.138300  2.120335  0.494496

    训练结束时,模型的CER 达到 49%,考虑到所使用的小型 TrOCR 模型,这是一个非常好的结果。

    以下是 Tensorboard 日志中的 CER 图。

图片

    直到训练结束,曲线呈下降趋势。尽管更长时间的训练可能会产生更好的结果,但我们将继续使用现有的模型。

    【9】使用微调 TrOCR 模型进行推理

    训练完 TrOCR 模型后,就可以对验证图像进行推理了。

    第一步是从最后保存的检查点加载经过训练的模型。​​​​​​​

processor = TrOCRProcessor.from_pretrained(ModelConfig.MODEL_NAME)trained_model = VisionEncoderDecoderModel.from_pretrained('seq2seq_model_printed/checkpoint-'+str(res.global_step)).to(device)

    res 对象包含一个 global_step 属性,该属性保存模型训练的总步数。上面的代码块使用该属性来加载最终时期的权重。

    接下来是一些辅助函数。第一个是读取图像。​​​​​​​

def read_and_show(image_path):    """    :param image_path: String, path to the input image.      Returns:        image: PIL Image.    """    image = Image.open(image_path).convert('RGB')    return image

    下一个辅助函数通过模型执行图像的前向传递。​​​​​​​

def ocr(image, processor, model):    """    :param image: PIL Image.    :param processor: Huggingface OCR processor.    :param model: Huggingface OCR model.      Returns:        generated_text: the OCR'd text string.    """    # We can directly perform OCR on cropped images.    pixel_values = processor(image, return_tensors='pt').pixel_values.to(device)    generated_ids = model.generate(pixel_values)    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]    return generated_text

    最后的辅助函数循环遍历目录中的所有图像,并继续调用 ocr() 函数进行推理。​​​​​​​

def eval_new_data(    data_path=os.path.join(DatasetConfig.DATA_ROOT, 'scut_test', '*'),    num_samples=50):    image_paths = glob.glob(data_path)    for i, image_path in tqdm(enumerate(image_paths), total=len(image_paths)):        if i == num_samples:            break        image = read_and_show(image_path)        text = ocr(image, processor, trained_model)        plt.figure(figsize=(7, 4))        plt.imshow(image)        plt.title(text)        plt.axis('off')        plt.show() eval_new_data(    data_path=os.path.join(DatasetConfig.DATA_ROOT, 'scut_test', '*'),    num_samples=100)

    我们正在对 100 个样本 (num_samples=100) 进行推理。

    以下是模型在训练前 OCR 错误的两个结果。

图片

图片

    结果令人印象深刻。经过微调 TrOCR 模型,它能够正确预测弯曲和垂直图像中的文本。 

    以下是模型表现良好的更多结果。

图片

    在这种情况下,尽管最末端的文本被拉伸,但模型仍然正确地预测它们。

图片

    在上述三种情况下,即使文本模糊,模型也能正确预测文本。

    结论

    在本文中,我们在弯曲文本识别数据集上对 TrOCR 模型进行了微调。我们从数据集讨论开始。接下来是数据集准备和 TrOCR 模型的训练。训练结束后,我们进行推理实验并分析结果。我们的结果表明,即使在模糊或弯曲的文本图像上,微调 TrOCR 模型也可以带来更好的性能。

    OCR 不仅仅是识别场景中的文本,还涉及使用 OCR 构建应用程序,例如验证码识别器或将 TrOCR 识别器与车牌检测管道相结合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/778758.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统分析师-数学与经济管理

系统架构设计师 系统架构设计师-软件开发模型总结 文章目录 系统架构设计师前言一、最小生成树二、最短路径三、网络与最大流量四、不确定型决策 前言 数学是一种严谨、缜密的科学,学习应用数学知识,可以培养系统架构设计师的抽象思维能力和逻辑推理能…

go中函数与方法的区别与go中关于面向对象理解

声明方法的区别 函数是一段可以独立调用的代码块,它可以有参数和返回值。函数的声明不依赖于任何类型,可以直接通过函数名进行调用。 函数的声明格式如下: func functionName(parameters) returnType {// 函数体 }示例: func A…

【Python】python+requests+excel+unittest+ddt实现接口自动化实例

目录 测试需求实现思路框架代码实例1. 环境准备和配置文件2. Excel接口数据及测试结果3. API封装4. 读取Excel数据5. 测试用例6. 日志和配置文件处理7. HTMLTestRunner生成可视化的html报告8. 报告通过飞书/邮件发送报告通过飞书发送报告通过邮件发送9. 入口函数10. 飞书Webhoo…

Git 命令总览

Git Git 是一个版本控制系统,用于管理项目代码。通过 Git 可以轻松地进行代码的提交、更新和合并,确保项目代码的安全性和稳定性。同时,Git 还提供了丰富的工具和功能,如分支管理、代码审查、版本回退等,帮助开发更好…

(含react-draggable库以及相关BUG如何解决)固定在左上方某盒子内(如按钮)添加可拖动功能,使用react hook语法实现

原生写法 // 封装组件 import React, { useState, useRef } from react;const DraggableModal ({ children }) > {const [position, setPosition] useState({ x: 0, y: 0 });const modalRef useRef(null);const handleMouseDown (e) > {const modal modalRef.curre…

五种免费的Python开发环境及具体下载网址

五种免费的Python开发环境及具体下载网址 目录 五种免费的Python开发环境及具体下载网址1.Anaconda2.PyCharm Community Edition3.Visual Studio Code4.Jupyter Notebook5. WinPython Python编程可选择不同的开发工具环境进行,本文介绍五种常用的,读者可…

adb基本命令

下载安装 adb 概述: ADB 全称为 Android Debug Bridge,起到调试桥的作用,是一个客户端-服务器端程序。其中客户端是用来操作的电脑,服务端是 Android 设备。 下载地址: Windows版本:https://dl.google.com/android/repository/pl…

vue前端工程化

前言 本文介绍的是有关于vue方面的前端工程化实践,主要通过实践操作让开发人员更好的理解整个前端工程化的流程。 本文通过开发准备阶段、开发阶段和开发完成三个阶段开介绍vue前端工程化的整体过程。 准备阶段 准备阶段我将其分为:框架选择、规范制…

vue做移动端自适应插件实现rem

1.实现方式 postcss-pxtorem:将px转换为rem amfe-flexible:为html、body提那家font-size,窗口调整的时候重新设置font-size 2.安装与使用 npm install amfe-flexible --save npm install postcss-pxtorem --save-dev 1.再main.js入口文件…

FOC,即Field-Oriented Control

FOC,即Field-Oriented Control,也被称为磁场导向控制或矢量控制,是一种利用变频器(VFD)来控制三相电机的技术。以下是对FOC的详细介绍,涵盖了其基本概念、控制原理、应用领域以及优缺点等方面的内容。 一、…

算法——图论:路径,回溯

. - 力扣(LeetCode) 给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序) graph[i] 是一个从节点 i 可以访问的所有节点的列表&#xff0…

GEE训练——如何实现单景影像边界的提取以sentinel和Landsat数据为例(栅格转矢量)

本教程的主要目的是如何实现单景影像边界的提取以sentinel和Landsat数据为例,很多人是项通过GEE来实现单景影像的获取过程,所以这里最重要的就是首先根据点确定影像的范围,或者根据指定的单景影像的编号来获取指定的单景影像,然后将其矢量化即可。 简介 在Google Earth E…

mysql8.x在windows server2019安装并设置主从同步难点问题

1.MySQL服务无法启动并提示“MySQL8.x本地计算机上的MySQL服务启动后停止” 1)用notepad打开my.ini文件,重新保存为ansi编码格式。 2)右键windows图标,点击“计算机管理”,点击“本地用户和组”,双击“组…

JSP技术及其应用

目录 一、JSP 指令元素 1. page指令 二、JSP 注释 1. HTML注释: 2. Java注释: 3. JSP注释: 三、页面编码格式 1. pageEncoding: 2. contentType: 一、JSP 指令元素 JSP包含三种主要的指令元素:pag…

SQL-CRUD-2数据库实验

目录 第一关任务描述 相关知识 插入完整内容的行 插入选定内容的行 编程要求 测试说明 第一关代码 第二关任务描述 相关知识 删除表中的指定行 删除表中的所有行 编程要求 测试说明 第二关代码 第三关任务描述 相关知识 更新表中的指定行 编程要求 测试说明…

【Pytorch入门】小土堆PyTorch入门教程完整学习笔记(详细笔记并附练习代码 ipynb文件)

小土堆PyTorch入门教程笔记 最近在观看PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】顺便做点笔记,方便回看,同时也希望记录的笔记能够帮助到更多在入门的小伙伴~ 【注】仅记录个人觉得重要的知识&#xff0c…

cas学习2:idea里搭建cas项目

在上篇中介绍了cas服务在tomcat中怎么启动的及某j集成cas,这篇讲下idea怎么集成cas成一个项目,为后续的定制自己的项目做好铺垫。 1.下载CAS 模板 Overlay Template,我这里使用 Apereo CAS 5.3 版本,JDK需要1.8 地址&#xff1a…

JavaWeb后端——HTTP协议/Tomcat

HTTP HTTP协议:无状态,对事务处理没有记忆能力。每次请求-响应都是独立的。后一次请求不会记录前一次请求数据。缺点:多次请求之间不能共享数据,优点:速度快。 HTTP协议请求报文: HTTP协议响应报文&#x…

分布式算法 - 雪花算法

雪花算法是一种用于生成全局唯一ID的分布式算法,用于解决分布式系统中生成唯一ID的需求。 雪花算法的核心思想是将生成的ID分为不同的部分,每个部分代表不同的含义。通常情况下,一个雪花 ID由3个部分组成: 时间戳:时…

JVM篇详细分析

JVM总体图 程序计数器: 线程私有的,每个线程一份,内部保存字节码的行号,用于记录正在执行字节码指令的地址。(可通过javap -v XX.class命令查看) java堆: 线程共享的区域,用来保存对…