第P1周:实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**

目录

一、前言

二、我的环境

三、前期准备

1.设置GPU

2.导入数据

3.数据可视化

四、构建简单的cnn网络

五、训练模型

1.设置超参数

2.编写训练函数

3.编写测试函数

4.正式训练

六、结果可视化

七、知识点详解


一、前言

  (1)感谢K同学,课程是优质的 至少很清晰明了,初学很舒服

(2)自己摆烂太久了,自驱力太差,要改正,自己要有计划

(3)希望自己能端正心态,好好的去学,坚持下去

二、我的环境

  1. 电脑系统:Windows 10

  2. 语言环境:Python 3.9.18

  3. 编译器:jupyter notebook

  4. 深度学习环境:

  5. PyTorch 版本: 2.0.1+cpu

  6. Torchvision 版本: 0.15.2+cpu

  7. 显卡及显存:AMD Radeon(TM) Graphics

三、前期准备

1.设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

 输出结果

证明本机只有CPU

2.导入数据

(1)第一步:使用dataset下载MNIST数据集,并划分好训练集与测试集

train_ds = torchvision.datasets.MNIST('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)test_ds  = torchvision.datasets.MNIST('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)

torchvision.datasets.MNIST详解

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

参数说明:

  • root (string) :数据地址,以上代码为data
  • train (string) :True-训练集,False-测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。

 (2)第二步:使用dataloader加载数据,并设置好基本的batch_size

batch_size = 32train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)test_dl  = torch.utils.data.DataLoader(test_ds, batch_size=batch_size)

torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

参数说明:

  • dataset (string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle (bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 __len__ 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers (int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last (bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout (numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn (callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。(默认:None)

(3)取一个批次查看数据格式

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

输出结果:批次32,通道1,宽28高28.

  1. train_dl 是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理。
  2. iter(train_dl) 将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的 next() 函数来逐个访问数据加载器中的元素。
  3. next() 函数用于获取迭代器中的下一个元素。在这里,它被用来获取 train_dl 中的下一个批量数据。
  4. imgs, labels = ... 这行代码是 Python 的解构赋值语法。它将从 next() 函数返回的元素中提取出两个变量:imgslabels
  5. imgs 变量将包含一个批量的图像数据,而 labels 变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的。
  6. imgs是一个张量(tensor),.shape是张量对象的一个属性,用来查看张量的形状。
  7. 形状的表示方式是[batch_size, channel, height, weight]

3.数据可视化

 #这段代码是使用Matplotlib库来绘制图像的#导入NumPy库并将其命名为np,用于处理数组和数值计算。
import numpy as np# 创建一个新的图形窗口,指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch),这里使用了  
#Matplotlib库中的figure函数。
plt.figure(figsize=(20, 5)) #遍历一个包含图像数据的迭代器或列表的前20个元素,并使用enumerate函数同时获取索引i和对应的图像#imgs。
for i, imgs in enumerate(imgs[:20]):# 维度缩减
#npimg = np.squeeze(imgs.numpy()):将PyTorch张量转换为NumPy数组,并使用np.squeeze函数去除数
#组中维度为1的维度,以便后续绘图。npimg = np.squeeze(imgs.numpy())# 将整个figure分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(npimg, cmap=plt.cm.binary)plt.axis('off')#plt.subplot(2, 10, i+1):创建一个2行10列的子图表格,并定位到第i+1个子图。这里使用了#Matplotlib库中的subplot函数。#plt.imshow(npimg, cmap=plt.cm.binary):在当前子图中显示图像。npimg是处理后的NumPy数组,#cmap=plt.cm.binary表示使用二值化的颜色映射(黑白色调)来显示图像。#plt.axis('off'):关闭坐标轴显示,这样在图像周围不会显示坐标轴刻度。
#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码
#通过以上步骤,代码实现了在Matplotlib中绘制一个大小为20宽、5高的图形窗口,并展示了前20个图像数据(假设imgs包含了20个图像数据),每行显示10个图像,以黑白色调显示,并关闭了坐标轴的显示。

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )

为什么要去除维度为1的维度:在深度学习中,通常使用张量(tensor)来表示数据。张量是多维数组的一种扩展形式,可以是0维(标量)、1维(向量)、2维(矩阵)、3维(立方体)等。在处理图像数据时,通常使用3维张量来表示图像,其形状通常为[批次大小, 通道数, 高度, 宽度]。
在PyTorch或其他深度学习框架中,加载图像数据后会生成相应的张量对象。然而,有时候图像数据的维度可能会有一些冗余,比如在加载单通道灰度图像时,其维度可能会是[1, 高度, 宽度],这里的1表示通道数。在这种情况下,我们可能希望去除这个维度为1的通道数维度,以便后续的处理和显示。
np.squeeze函数的作用就是去除数组中维度为1的维度。例如,对于形状为[1, 高度, 宽度]的张量,经过np.squeeze后,形状会变为[高度, 宽度],去除了维度为1的通道数维度。这样做的好处包括:

1.简化数据表示:去除维度为1的冗余维度,使数据的表示更加简洁和清晰。
2.避免错误:有时候在进行数据处理或绘图时,对于维度为1的通道数维度可能会造成一些错误,去除这些维度可以避免这些问题的出现。
3.兼容性:一些图像处理或显示函数可能对维度要求较严格,去除冗余维度可以提高代码的兼容性。

因此,在绘图前将PyTorch张量转换为NumPy数组,并使用np.squeeze函数去除维度为1的冗余通道数维度,可以使数据更加符合绘图或处理的要求。

输出结果:

 

四、构建简单的cnn网络

(1)第一步构建cnn网络模型

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

 网络结构图(可放大查看)

 

import torch.nn.functional as Fnum_classes = 10  # 图片的类别数class Model(nn.Module):def __init__(self):super().__init__()# 特征提取网络self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   self.pool2 = nn.MaxPool2d(2) # 分类网络self.fc1 = nn.Linear(1600, 64)          self.fc2 = nn.Linear(64, num_classes)# 前向传播def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))     x = self.pool2(F.relu(self.conv2(x)))x = torch.flatten(x, start_dim=1)x = F.relu(self.fc1(x))x = self.fc2(x)return x
这段代码定义了一个名为 Model 的神经网络模型,该模型包含了特征提取网络和分类网络两部分。
下面是对代码中各部分的中文逐行解释:
import torch.nn.functional as F导入 PyTorch 中的函数模块 torch.nn.functional,通常用于定义神经网络的各种激活函数和损失函数。
num_classes = 10  # 定义了变量 num_classes,表示图片的类别数,这个值在这里被设置为 10。class Model(nn.Module):定义了一个名为 Model 的类,该类继承自 nn.Module 类,表示这是一个 PyTorch 的模型。def __init__(self):super().__init__()在初始化函数中调用父类 nn.Module 的初始化函数。# 特征提取网络self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   self.pool2 = nn.MaxPool2d(2) 定义了特征提取网络,包括两个卷积层和两个最大池化层。conv1 和 conv2 是卷积层,使用 nn.Conv2d 进行定义,分别将输入的通道数从 1 扩展到 32,再从 32 扩展到 64。pool1 和 pool2 分别是最大池化层,使用 nn.MaxPool2d 进行定义,池化核大小为 2*2。# 分类网络self.fc1 = nn.Linear(1600, 64)          self.fc2 = nn.Linear(64, num_classes)定义了分类网络,包括两个全连接层。fc1 和 fc2 是全连接层,使用 nn.Linear 进行定义,fc1 的输入维度为 1600,输出维度为 64;fc2 的输入维度为 64,输出维度为 num_classes,即图片的类别数。# 前向传播def forward(self, x):定义了前向传播函数,即模型从输入到输出的计算过程。x = self.pool1(F.relu(self.conv1(x)))     x = self.pool2(F.relu(self.conv2(x)))通过卷积层和池化层对输入 x 进行特征提取和降维操作,并使用 ReLU 激活函数进行非线性变换。x = torch.flatten(x, start_dim=1)将特征张量展平成一维张量,以便进行全连接层的操作。x = F.relu(self.fc1(x))x = self.fc2(x)通过两个全连接层进行分类操作,最终输出预测结果。return x返回最终的输出结果。

 

 

(2)第二步:加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)summary(model)

(3)第三步: 输出结果

 结果解读:

五、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。

(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.正式训练

(1)第一步:训练

epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质

(2)获取结果:

六、结果可视化

 可见准确率越来越高,损失越来越小


七、知识点详解

 

本文使用的是最简单的CNN模型,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges(下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

 如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

 

2. 神经网络程序说明

神经网络程序可以简单概括如下:

 

              

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/778026.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vant checkbox 复选框 样式改写

修改前 修改后 基于 vant&#xff1a; 4.8.3 unocss: 0.53.4 <van-checkbox-group v-model"query.zczb" shape"square" class"text-16 w-100% flex flex-wrap"><template v-for"item in registerCapitalOption"><v…

LeetCode 27 移除元素

给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面…

“预防儿童烧烫伤”科普安全课堂走进嘉鱼县第一小学

为提高嘉鱼县儿童烧烫伤安全意识、隐患识别能力以及突发应急处置能力&#xff0c;3月26日下午&#xff0c;在中国社会福利基金会烧烫伤关爱公益基金、嘉鱼县妇女联合会、嘉鱼县教育局的支持下&#xff0c;嘉鱼县蒲公英社会工作服务中心走进嘉鱼县第一小学开展预防儿童烧烫伤科普…

基于Spring Boot 3 + Spring Security6 + JWT + Redis实现登录、token身份认证

基于Spring Boot3实现Spring Security6 JWT Redis实现登录、token身份认证。 用户从数据库中获取。使用RESTFul风格的APi进行登录。使用JWT生成token。使用Redis进行登录过期判断。所有的工具类和数据结构在源码中都有。 系列文章指路&#x1f449; 系列文章-基于Vue3创建前端…

MongoDB内存过高问题分析解决

告警 公司有个3.2.7版本的mongo复制集&#xff0c;最近几天频繁告警内存过高。 服务器配置16C64G内存。mongo备节点内存使用到55G&#xff0c;触发告警。 以下内容基于3.2.7版本&#xff0c;3.2.7版本已经太老&#xff0c;很多后来的命令和配置&#xff0c;3.2.7都没有。 …

【黑马头条】-day04自媒体文章审核-阿里云接口-敏感词分析DFA-图像识别OCR-异步调用MQ

文章目录 day4学习内容自媒体文章自动审核今日内容 1 自媒体文章自动审核1.1 审核流程1.2 内容安全第三方接口1.3 引入阿里云内容安全接口1.3.1 添加依赖1.3.2 导入aliyun模块1.3.3 注入Bean测试 2 app端文章保存接口2.1 表结构说明2.2 分布式id2.2.1 分布式id-技术选型2.2.2 雪…

Unity2018发布安卓报错 Exception: Gradle install not valid

Unity2018发布安卓报错 Exception: Gradle install not valid Exception: Gradle install not valid UnityEditor.Android.GradleWrapper.Run (System.String workingdir, System.String task, System.Action1[T] progress) (at <c67d1645d7ce4b76823a39080b82c1d1>:0) …

Prometheus +Grafana +node_exporter可视化监控Linux虚机

1、介绍 待补充 2、架构图 待补充 Prometheus &#xff1a;主要是负责存储、抓取、聚合、查询方面。 node_exporter &#xff1a;主要是负责采集物理机、中间件的信息。 3、搭建过程 配置要求&#xff1a;1台主服务器 n台从服务器 &#xff08;被监控的linux虚机&am…

MoneyPrinterTurbo搭建详细流程(Linux)及常见问题

先附上链接: MoneyPrinterTurbohttps://github.com/harry0703/MoneyPrinterTurboMoneyPrinterTurbo是一款合成视频的软件。 你只需要提供一个主题或者关键字,就可以全自动生成视频文案、视频素材、视频字幕、视频背景音乐,然后合成一个高清的短视频。 接下来讲解详细的搭…

macOS 13 Ventura (苹果最新系统) v13.6.6正式版

macOS 13 Ventura是苹果电脑的全新操作系统&#xff0c;它为用户带来了众多引人注目的新功能和改进。该系统加强了FaceTime和视频通话的体验&#xff0c;同时优化了邮件、Safari浏览器和日历等内置应用程序&#xff0c;使其更加流畅、快速和安全。特别值得一提的是&#xff0c;…

测试人进阶技能:单元测试报告应用指南

为什么需要单元测试 从产品角度而言&#xff0c;常规的功能测试、系统测试都是站在产品局部或全局功能进行测试&#xff0c;能够很好地与用户的需要相结合&#xff0c;但是缺乏了对产品研发细节&#xff08;特别是代码细节的理解&#xff09;。 从测试人员角度而言&#xff0…

MySQL索引18连问,谁能顶住

前言 过完这个节&#xff0c;就要进入金银季&#xff0c;准备了 18 道 MySQL 索引题&#xff0c;一定用得上。 作者&#xff1a;感谢每一个支持&#xff1a; github 1. 索引是什么 索引是一种数据结构&#xff0c;用来帮助提升查询和检索数据速度。可以理解为一本书的目录&…

Hadoop面试重点

文章目录 1. Hadoop 常用端口号2.Hadoop特点3.Hadoop1.x、2.x、3.x区别 1. Hadoop 常用端口号 hadoop2.xhadoop3.x访问HDFS 端口500709870访问 MR 执行情况端口80888088历史服务器1988819888客户端访问集群端口90008020 2.Hadoop特点 高可靠&#xff1a;Hadoop底层维护多个数…

Spring boot 发送文本邮件 和 html模板邮件

Spring boot 发送文本邮件 和 html模板邮件 提示&#xff1a;这里使用 spring-boot-starter-mail 发送文本邮件 和 html模板邮件 文章目录 Spring boot 发送文本邮件 和 html模板邮件一、开启QQ邮箱里的POP3/SMTP服务①&#xff1a;开启步骤 二、简单配置①&#xff1a;引入依赖…

8.均值滤波

1 简介 均值滤波是一种低通滤波&#xff0c;它可以有效过滤图片中的椒盐噪声&#xff0c;但是副作用也同样明显&#xff0c;会使图片的边缘过于模糊。   均值滤波的卷积核系数均为1。   这里最终重复一下算法实现以及验证的步骤&#xff1a;     1.MATLAB读取图片并转化…

macOS Sonoma如何查看隐藏文件

在使用Git进行项目版本控制时&#xff0c;我们可能会遇到一些隐藏文件&#xff0c;比如.gitkeep文件。它通常出现在Git项目的子目录中&#xff0c;主要作用是确保空目录也可以被跟踪。 终端命令 在尝试查看.gitkeep文件时&#xff0c;使用Terminal命令来显示隐藏文件 default…

【Pt】马灯贴图绘制过程 03-制作油渍、积尘效果

目录 效果 一、制作油渍效果 1.1 基本油渍 1.2 流淌的油渍痕迹 二、制作浮尘效果 三、制作积尘效果 效果 一、制作油渍效果 1.1 基本油渍 将上篇制作的“锈迹_深色”和“锈迹_浅色”两个文件夹再次合并为一个文件夹 这里就命名为“锈迹” 添加一个填充图层 设置Base …

小程序利用WebService跟asp.net交互过程发现的问题并处理

最近在研究一个项目&#xff0c;用到asp.net跟小程序交互&#xff0c;简单的说就是小程序端利用wx.request发起请求。获取asp.net 响应回来的数据。但经常会报错。点击下图的测试按钮 出现如下错误&#xff1a; 百思不得其解&#xff0c;试了若干方法&#xff0c;都不行。 因为…

企业网站建设的方法的相关问题的解决办法的问题

现在市场上比较大的公司都建立了自己的企业网站&#xff0c;比如华为、小米等&#xff0c;在他们的企业网站中&#xff0c;可以充分展示自己产品的优势&#xff0c;介绍公司的优质服务。 这都是让顾客改变购买想法的重要因素。 现在互联网发达了&#xff0c;很多人在购买产品的…

智慧工地安全生产与风险预警大平台的构建,需要哪些技术?

随着科技的不断发展&#xff0c;智慧工地已成为现代建筑行业的重要发展趋势。智慧工地方案是一种基于先进信息技术的工程管理模式&#xff0c;旨在提高施工效率、降低施工成本、保障施工安全、提升施工质量。一般来说&#xff0c;智慧工地方案的构建&#xff0c;需要通过集成物…