【笔记】RDD算子操作(Spark基础知识)

持续更新中!!!

目录

一、RDD的创建

1.从本地创建

(1)本地文件

(2)hdfs文件(先提前创建目录并上传文件)

2.从集合创建(通过并行集合(列表)创建RDD)

二、RDD的写回

三、转换操作(Transformation)

1.filter(func)

2.map(func)

3.flatMap(func)

4.groupByKey()

5.reduceByKey(func)

6.join()

7.subtractByKey()

8.distinct()

9.union()、intersection()、subtract()

四、行动操作(Action)

​编辑1.count()

2.collect()

3.first()

4.take(n)

5.reduce(func)

6.foreach(func)

五、持久化

六、RDD分区

七、键值对RDD(转换操作)

1.reduceByKey(func)

2.groupByKey()

3.keys()

4.values()

5.sortByKey()

6.mapValues(func)

7.join()

8.combineByKey()


一、RDD的创建

从文本、JSON、SequenceFile、分布式文件系统、集合、数据库等创建

1.从本地创建

(1)本地文件

sc.textFile(file:///     )  (这一步是转换操作,只记录不执行,所以如果是一个不存在的文件也不会报错,只有在执行执行操作时才报错)
例:
>>> rdd=sc.textFile("file:///home/hadoop/sparksj/word.txt")
>>> rdd.foreach(print)
Spark is better
Hadoop is good
Spark is fast

(2)hdfs文件(先提前创建目录并上传文件)

sc.textFile("地址")    例:sc.textFile("/usr/hadoop/     ")
>>> rdd = sc.textFile("hdfs://localhost:9000/user/hadoop/word.txt")
>>> rdd = sc.textFile("/user/hadoop/word.txt")
>>> rdd = sc.textFile("word.txt")
三条语句是完全等价的,可以使用其中任意一种方式


注意

1.可以从多个数据集文件中通过读取文件夹来读取多个文件
例如:在home/hadoop/sparksj/mycode目录下有多个文件,读取其中的所有文件
>>> rdd2=sc.textFile("file:///home/hadoop/sparksj/mycode")

2.可以读取多种类型的数据
>>> rdd2=sc.textFile("file:///home/hadoop/sparksj/people.json")
>>> rdd2.foreach(print)
{"name":"Justin", "age":19}
{"name":"Michael"}
{"name":"Andy", "age":30}
3.lambda表达式
>>> rdd3=rdd2.filter(lambda line:"Andy" in line)    (filter(func):过滤,从所给数据集中所有数据中过滤出来,即筛选出满足函数func的元素,并返回一个新的数据集)
>>> rdd3.foreach(print)
{"name":"Andy", "age":30}

2.从集合创建(通过并行集合(列表)创建RDD)

调用SparkContext的parallelize方法,在Driver中一个已经存在的集合(列表)上创建:

>>> a = [1,2,3,4,5]
>>> rdd = sc.parallelize(a)
>>> rdd.foreach(print)
3
2
4
5
1
>>> rdd.collect()
[1, 2, 3, 4, 5]
>>> rdd.reduce(lambda a,b:a+b)    (求和)
15

>>> b=["Spark","bbb","MongoDB","Spark"]
>>> rdd2=sc.parallelize(b)
>>> rdd2.foreach(print)
Spark
MongoDB
bbb
Spark

二、RDD的写回

写回本地:数据集.saveAsTextFile("file:///    ")
写回HDFS:数据集.saveAsTextFile("/user/hadoop/       或直接是文件名")        #同写入文件一样,三条语句
 

三、转换操作(Transformation

对于RDD而言,每一次转换操作都会产生不同的RDD,供给下一个“转换”使用

转换得到的RDD是惰性求值的,也就是说,整个转换过程只是记录了转换的轨迹,并不会发生真正的计算,只有遇到行动操作时,才会发生真正的计算,开始从血缘关系源头开始,进行物理的转换操作

转换操作并不会产生真正的计算,所以说需要把转换后的内容赋值给对象,而行为操作则不需要赋值给对象,直接执行。

(每一个func都是一个匿名函数)

1.filter(func)

筛选出满足函数func的元素,并返回一个新的数据集

例:rdd3=rdd2.filter(lambda line:"Andy" in line) 

2.map(func)

每个元素传递到函数func中,并将结果返回为一个新的数据集

例:>>> rdd3=rdd2.map(lambda x:(x,1))            #转换为键值对
>>> rdd3.foreach(print)
('Spark', 1)
('bbb', 1)
('Spark', 1)
('MongoDB', 1)

3.flatMap(func)

与map()相似,但每个输入元素都可以映射到0或多个输出结果

map(func)与flatMap(func)的区别:把map()操作得到的数据集中的每个元素“拍扁”(flat),就得到了flatMap()操作的结果

>>> rdd=sc.textFile("file:///home/hadoop/sparksj/word.txt")
>>> rdd1=rdd.map(lambda line:line.split(" "))                #split(" "):按空格分隔
>>> rdd1.foreach(print)
['Hadoop', 'is', 'good']
['Spark', 'is', 'fast']
['Spark', 'is', 'better']
>>> rdd2=rdd.flatMap(lambda line:line.split(" "))
>>> rdd2.foreach(print)
Spark
is
better
Hadoop
is
good
Spark
is
fast
>>> rdd3=rdd2.map(lambda x:(x,1))                #变成键值对
>>> rdd3.foreach(print)
('Spark', 1)
('is', 1)
('better', 1)
('Hadoop', 1)
('is', 1)
('good', 1)
('Spark', 1)
('is', 1)
('fast', 1)
>>> rdd4=rdd1.map(lambda x:(x,1))
>>> rdd4.foreach(print)
(['Spark', 'is', 'better'], 1)
(['Hadoop', 'is', 'good'], 1)
(['Spark', 'is', 'fast'], 1)

4.groupByKey()

应用于(K,V)键值对的数据集时,返回一个新的(K, Iterable)形式的数据集

例:>>> rdd5=rdd3.groupByKey()
>>> rdd5.foreach(print)
('is', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e5900>)
('good', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e76d0>)
('Spark', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e5900>)
('Hadoop', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e5900>)
('fast', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e76d0>)
('better', <pyspark.resultiterable.ResultIterable object at 0x7fe2ce9e5900>)
即变成("is",(1,1,1))

5.reduceByKey(func)

应用于(K,V)键值对的数据集时,返回一个新的(K, V)形式的数据集,其中每个值是将每个key传递到函数func中进行聚合后的结果

例:>>> rdd6=rdd3.reduceByKey(lambda a,b:a+b)                #词频统计
>>> rdd6.foreach(print)
('Hadoop', 1)
('fast', 1)
('better', 1)
('is', 3)
('good', 1)
('Spark', 2)

6.join()

join就表示内连接。对于内连接,对于给定的两个输入数据集(K,V1)和(K,V2),只有在两个数据集中都存在的key才会被输出,最终得到一个(K,(V1,V2))类型的数据集

>>> rdd1=sc.parallelize([(1001,"zhangsan"),(1002,"lisi"),(1003,"wangwu")])
>>> rdd2=sc.parallelize([(1001,"student"),(1002,"teather")])
>>> rdd1.join(rdd2).collect()
[(1001, ('zhangsan', 'student')), (1002, ('lisi', 'teather'))]
>>> rdd1.leftOuterJoin(rdd2).collect()            #左外连接
[(1001, ('zhangsan', 'student')), (1002, ('lisi', 'teather')), (1003, ('wangwu', None))]
>>> rdd1.rightOuterJoin(rdd2).collect()        #右外连接
[(1001, ('zhangsan', 'student')), (1002, ('lisi', 'teather'))]
>>> rdd1.fullOuterJoin(rdd2).collect()            #全连接
[(1001, ('zhangsan', 'student')), (1002, ('lisi', 'teather')), (1003, ('wangwu', None))]

7.subtractByKey()

删掉 RDD1 中键与 RDD2 中的键相同的元素

>>> rdd1.subtractByKey(rdd2).collect()
[(1003, 'wangwu')]

8.distinct()

去重

>>> r1=sc.parallelize([1,2,2,3,3,3])
>>> r1.distinct().collect()
[1, 2, 3]

9.union()、intersection()、subtract()

>>> r1=sc.parallelize([1,2,3])        #键值对同理
>>> r2=sc.parallelize([1,2,4,5,6])
>>> r12=r1.union(r2)        #并集
>>> r12.collect()
[1, 2, 3, 1, 2, 4, 5, 6]
>>> r21=r1.intersection(r2)        #交集
>>> r21.collect()
[1, 2]
>>> r121=r1.subtract(r2)        #差集
>>> r121.collect()
[3]

四、行动操作(Action)

行动操作是真正触发计算的地方。Spark程序执行到行动操作时,才会执行真正的计算,从文件中加载数据,完成一次又一次转换操作,最终,完成行动操作得到结果。


1.count()

返回数据集中的元素个数

2.collect()

数组的形式返回数据集中的所有元素

3.first()

返回数据集中的第一个元素

4.take(n)

以数组的形式返回数据集中的前n个元素

5.reduce(func)

通过函数func(输入两个参数并返回一个值)聚合数据集中的元素

6.foreach(func)

将数据集中的每个元素传递到函数func中运行


>>> rdd=sc.textFile("file:///home/hadoop/sparksj/word.txt")
>>> rdd.count()
3
>>> rdd.collect()
['Hadoop is good', 'Spark is fast', 'Spark is better']
>>> rdd.first()
'Hadoop is good'
>>> rdd.take(2)
['Hadoop is good', 'Spark is fast']
>>> rdd.reduce(lambda a,b:a+b)
'Hadoop is goodSpark is fastSpark is better'
>>> rdd.foreach(print)
Spark is better
Hadoop is good
Spark is fast


练习:

>>> rdd=sc.textFile("file:///home/hadoop/sparksj/y.txt")
>>> rdd.foreach(print)
one,two,two,three,three,three
>>> rdd1=rdd.flatMap(lambda line: line.split(","))
>>> rdd2=rdd1.map(lambda x:(x,1))
>>> rdd2.foreach(print)
('one', 1)
('two', 1)
('two', 1)
('three', 1)
('three', 1)
('three', 1)
>>> rdd3=rdd2.reduceByKey(lambda a,b:a+b)
>>> rdd3.foreach(print)
('one', 1)
('two', 2)
('three', 3)
>>> rdd4=rdd1.map(lambda s:len(s))
>>> rdd4.foreach(print)
3
3
3
5
5
5
>>> rdd4.reduce(lambda a,b:a+b)
24
>>> rdd5=rdd1.map(lambda x:"BigData:"+x)
>>> rdd5.foreach(print)
BigData:one
BigData:two
BigData:two
BigData:three
BigData:three
BigData:three

>>> rdd6=sc.parallelize([2,6,1,4,8])
>>> rdd7=rdd6.map(lambda x:x+10)
>>> rdd7.collect()
[12, 16, 11, 14, 18]
>>> rdd7.filter(lambda x:x>15).collect()
[16, 18]

五、持久化

在了解持久化之前先了解什么是惰性机制

所谓的“惰性机制”是指,整个转换过程只是记录了转换的轨迹,并不会发生真正的计算,只有遇到行动操作时,才会触发“从头到尾”的真正的计算

持久化:

在Spark中,RDD采用惰性求值的机制,每次遇到行动操作,都会从头开始执行计算。每次调用行动操作,都会触发一次从头开始的计算。这对于迭代计算而言,代价是很大的,迭代计算经常需要多次重复使用同一组数据

  • 可以通过持久化(缓存)机制避免这种重复计算的开销
  • 可以使用persist()方法对一个RDD标记为持久化
  • 之所以说“标记为持久化”,是因为出现persist()语句的地方,并不会马上计算生成RDD并把它持久化,而是要等到遇到第一个行动操作触发真正计算以后,才会把计算结果进行持久化
  • 持久化后的RDD将会被保留在计算节点的内存中被后面的行动操作重复使用


persist()的圆括号中包含的是持久化级别参数:

  • persist(MEMORY_ONLY):表示将RDD作为反序列化的对象存储于JVM中,如果内存不足,就要按照LRU原则替换缓存中的内容(只持久化到内存)
  • persist(MEMORY_AND_DISK)表示将RDD作为反序列化的对象存储在JVM中,如果内存不足,超出的分区将会被存放在硬盘上
  • 一般而言,使用cache()方法时,会调用persist(MEMORY_ONLY)
  • 可以使用unpersist()方法手动地把持久化的RDD从缓存中移除

六、RDD分区

RDD是弹性分布式数据集,通常RDD很大,会被分成很多个分区,分别保存在不同的节点上

分区的作用 :(1)增加并行度        (2)减少通信开销

  • 分区是RDD数据存储的最小单位
  • RDD所有的操作都会作用在所有的分区之上

在调用textFile()和parallelize()方法的时候手动指定分区个数即可,语法格式如下: sc.textFile(path, partitionNum)        其中,path参数用于指定要加载的文件的地址,partitionNum参数用于指定分区个数。

>>> r1=sc.parallelize([1,2,3,4,5,6],3)                #设置三个分区
>>> r1.glom().collect()                #显示r1中三个分区的内容
[[1, 2], [3, 4], [5, 6]]                                                        
>>> len(r1.glom().collect())                #显示r1这个RDD的分区数量
3
>>> r1.map(lambda x:x+10).glom().collect()
[[11, 12], [13, 14], [15, 16]]

使用reparititon方法(重分区)重新设置分区个数:

>>> data = sc.parallelize([1,2,3,4,5],2)
>>> len(data.glom().collect())                #显示data这个RDD的分区数量
2
>>> rdd = data.repartition(1)                #对data这个RDD进行重新分区
>>> len(rdd.glom().collect())                #显示rdd这个RDD的分区数量
1

思考:

rdd1=sc.parallelize(range(10),3)
print(rdd1.glom().collect())
r2=rdd1.reduce(lambda x,y:x-y)
print(r2)

写出结果,并解释
输出:[[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
21
解释:(0-1-2)-(3-4-5)-(6-7-8-9)=-3+6+18=21

七、键值对RDD(转换操作)

1.reduceByKey(func)

使用func函数合并具有相同键的值(见三、转换操作(Transformation)中5.reduceByKey(func))

2.groupByKey()

对具有相同键的值进行分组(同三、转换操作(Transformation)中4.groupByKey())

比如,对四个键值对("spark",1)、("spark",2)、("hadoop",3)和("hadoop",5),采用groupByKey()后得到的结果是:("spark",(1,2))和("hadoop",(3,5))

3.keys()

keys只会把Pair RDD(一个键值对(key-value pairs)的RDD)中的key返回形成一个新的RDD

4.values()

values只会把Pair RDD中的value返回形成一个新的RDD

5.sortByKey()

返回一个根据键排序的RDD

6.mapValues(func)

对键值对RDD中的每个value都应用一个函数,但是,key不会发生变化

7.join()

join就表示内连接。对于内连接,对于给定的两个输入数据集(K,V1)和(K,V2),只有在两个数据集中都存在的key才会被输出,最终得到一个(K,(V1,V2))类型的数据集

8.combineByKey()

自定义对每个键的值进行聚合的方式

>>> r1=sc.parallelize([("Spark",10),("Bigdata",5),("Flink",3)])
>>> r1.foreach(print)
('Spark', 10)
('Bigdata', 5)
('Flink', 3)
>>> r1.keys().collect()                #输出键(collect():列表形式)
['Spark', 'Bigdata', 'Flink']
>>> r1.values().collect()                #输出值(列表形式)
[10, 5, 3]

>>> r1.sortByKey().collect()                #sortByKey()按键排序(默认升序:B,F,S)
[('Bigdata', 5), ('Flink', 3), ('Spark', 10)]
>>> r1.sortByKey(False).collect()                #按键降序排序
[('Spark', 10), ('Flink', 3), ('Bigdata', 5)]
>>> r1.sortBy(lambda x:x).collect()                #sortBy()默认按键升序排序
[('Bigdata', 5), ('Flink', 3), ('Spark', 10)]
>>> r1.sortBy(lambda x:x,False).collect()                #按键降序排序
[('Spark', 10), ('Flink', 3), ('Bigdata', 5)]
>>> r1.sortBy(lambda x:x[0],False).collect()                #x[0],False指定按键降序排序
[('Spark', 10), ('Flink', 3), ('Bigdata', 5)]
>>> r1.sortBy(lambda x:x[1],False).collect()                #x[1],False指定按值降序排序
[('Spark', 10), ('Bigdata', 5), ('Flink', 3)]
>>> r1.sortBy(lambda x:x[1],True).collect()                #x[1],True指定按值升序排序
[('Flink', 3), ('Bigdata', 5), ('Spark', 10)]

>>> r1.mapValues(lambda x:x+1).collect()                #mapValues对键值对RDD中的每个value都应用一个函数,但是,key不会发生变化
[('Spark', 11), ('Bigdata', 6), ('Flink', 4)]
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/777962.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学点Java_Day12_JDBC

1 JDBC 面向接口编程 在JDBC里面Java这个公司只是提供了一套接口Connection、Statement、ResultSet&#xff0c;每个数据库厂商实现了这套接口&#xff0c;例如MySql公司实现了&#xff1a;MySql驱动程序里面实现了这套接口&#xff0c;Java程序员只要调用实现了这些方法就可以…

如何调试Clang源码

下载编译Clang 这个就直接去LLVM官网下载&#xff0c;然后编译好Clang就行&#xff0c;注意得debug模式&#xff0c;保存符号信息。 调试Clang 可以直接通过命令行来调试 #进入调试环境&#xff0c;这里的clang得是刚刚编译好的 lldb ./clang # r是运行&#xff0c;后面是正…

电脑关机速度很慢怎么解决?

给电脑关机&#xff0c;总是要很久才完全关闭。这是因为计算机运行了太长时间&#xff0c;并且打开的程序太多&#xff0c;则关闭时间超过十秒钟&#xff0c;这是正常的现象。还有就是计算机升级或补丁程序更新也将导致计算机缓慢关闭。此时&#xff0c;建议耐心等待关闭完成。…

离心式风机运行效率测算

1.总压静压动压&#xff1b; 2.动压0.5空气体密度风速2&#xff1b; 风机所需功率P&#xff08;KW&#xff09;&#xff1a;PQp/&#xff08;36001000η0η1&#xff09; Q—风量&#xff0c;m3/h&#xff1b; p—风机的全风压&#xff0c;Pa&#xff1b; η0—风机的内效率&a…

计算机网络-RIP动态路由协议简介

一、概述 前面我们学习了动态路由协议按照工作机制及算法划分可以分为&#xff1a;距离矢量路由协议DV型和链路状态路由协议LS型。RIP就是典型的距离矢量路由协议&#xff0c;但是实际工作中用得已经比较少了。 距离矢量路由协议DV: RIP 链路状态路由协议LS: OSPF IS-IS 二、RI…

深入Spark与LDA:大规模文本主题分析实战

使用LDA模型和Spark进行文本主题分析 本篇博客介绍了如何使用LDA&#xff08;潜在狄利克雷分配&#xff09;模型和Spark进行文本主题分析。我们的目标是从大量的用户评论中提取出主题。 1. 环境设置 首先&#xff0c;我们需要导入所需的库&#xff0c;包括jieba&#xff08;…

Java八股文(JVM)

Java八股文のJVM JVM JVM 什么是Java虚拟机&#xff08;JVM&#xff09;&#xff1f; Java虚拟机是一个运行Java字节码的虚拟机。 它负责将Java程序翻译成机器代码并执行。 JVM的主要组成部分是什么&#xff1f; JVM包括以下组件&#xff1a; ● 类加载器&#xff08;ClassLoa…

当当狸智能激光雕刻机 多种材质自由雕刻,轻松打造独一无二的作品

提及“激光雕刻”&#xff0c;大多数人的印象一般都是&#xff1a;笨重巨大、价格昂贵、操作复杂、使用门槛较高、调试难度大...不是普通人能够随意操作的&#xff0c;让人望尘莫及。 而小米有品上新的这台「当当狸桌面智能激光雕刻机L1」&#xff0c;将超乎你的想象&#xff…

JimuReport积木报表 v1.7.4 公测版本发布,免费的JAVA报表工具

项目介绍 一款免费的数据可视化报表&#xff0c;含报表和大屏设计&#xff0c;像搭建积木一样在线设计报表&#xff01;功能涵盖&#xff0c;数据报表、打印设计、图表报表、大屏设计等&#xff01; Web 版报表设计器&#xff0c;类似于excel操作风格&#xff0c;通过拖拽完成报…

【C语言基础】:数据在内存中的存储

文章目录 一、整数在内存中的存储二、大小端字节序和字节序判断1. 为什么有大小端&#xff1f;2. 练习 三、浮点数在内存中的存储1. 浮点数的存储1.1 浮点数的存储过程1.2 浮点数取的过程 四、题目解析 书山有路勤为径&#xff0c;学海无涯苦作舟。 创作不易&#xff0c;宝子们…

轻量级检测模型效果一定差?基于轻量级目标检测模型构建布匹瑕疵检测模型,对比分析不同分辨率图像尺度对模型效果的影响

瑕疵类的检测模型如&#xff1a;工业部件瑕疵、瓷砖瑕疵、PCB瑕疵、布匹瑕疵等等&#xff0c;在我们之前的博文中已经有过很多相关的开发实践了&#xff0c;这里就不再一一列举了&#xff0c;感兴趣的话可以直接搜索关键字信息博文内容即可一键直达。 因为本文的实验对象选择的…

structured bindings is supported from c++17

结构化绑定可以绑定结构体、数组和 tuple-like 对象。 完整示例&#xff1a; #include <iostream> #include <format> #include <iomanip>void test_00(){struct Box{int width_;int height_;std::string name_;};Box box{3,4,"amazing"};auto [w…

YOLOv9改进策略 | 损失函数篇 | InnerIoU、InnerMPDIoU二次创新损失函数助力小目标检测(全网独家首发)

一、本文介绍 本文给大家带来的改进机制是InnerIoU以及包含其它二次创新的代码InnerCIoU、InnerMPDIoU等一些列利用Inner形成的二次创新损失函数&#xff0c;到此大家可能比较模糊为啥Inner能够和其他损失函数形成二次创新&#xff0c;Inner又是一个什么样的机制&#xff0c;开…

【1】网络协议基础概念

【1】网络协议基础知识 1、互联网2、为什么要学习网络协议3、学习中需要搭建的环境4、客户端-服务器5、Java 的跨平台原理6、C/C的跨平台原理7、一个简单的SpringBoot项目(1) pom.xml(2) application.yml(3) NetworkStudyApp.java(4) SwaggerConfig.java(5) HelloWorldControll…

Git--08--Git分支合并操作

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 Git分支合并操作案例流程客户端&#xff1a;GitExtensions操作步骤&#xff1a;A操作步骤&#xff1a;B操作步骤&#xff1a;C操作步骤&#xff1a;D操作步骤&#…

Vue挂载全局方法

简介&#xff1a;有时候&#xff0c;频繁调用的函数&#xff0c;我们需要把它挂载在全局的vue原型上&#xff0c;方便调用&#xff0c;具体怎么操作&#xff0c;这里来记录一下。 一、这里以本地存储的方法为例 var localStorage window.localStorage; const db {/** * 更新…

LockSupport与线程中断机制

中断机制是个协商机制 Interrupt(): 将中断状态设置为true Interrupted():&#xff08;静态方法&#xff09; 1.返回当前线程的中断状态 2.将中断状态清零并设置为false is Interrupted(): 判断当前线程是否被中断 如何停止中断运行中的线程&#xff1f; 一个线程不应该由…

星光/宝骏/缤果/长安 车机CarPlay手机操作破解教程V2.0版本(无需笔记本、无需笔记本、无需笔记本)

之前写了个1.0版本&#xff0c;由于太局限&#xff0c;需要用到笔记本才能操作&#xff0c;很多车友反馈不方便。特此出个手机版教程&#xff0c;简单easy&#xff0c;妈妈再也不用担心我搞不定啦 一、准备工作 先卸载车机上的autokit 或者 智能互联 app&#xff0c;这步很关…

echarts 3D示例 echart, echarts-gl

echarts官网有很多的炫酷的3D模型 来尝试实现下&#xff0c;使用原本的柱状图或者折线图代码创建echarts示例,使用cdn的方式引入echarts <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewp…

.helper勒索病毒的最新威胁:如何恢复您的数据?

导言&#xff1a; 随着信息技术的不断进步&#xff0c;网络安全问题日益突出&#xff0c;其中勒索病毒成为了威胁网络安全的一大隐患。.helper勒索病毒作为近期频繁出现的一种恶意软件&#xff0c;其危害性和传播速度引起了广大用户的深切关注。本文将深入探讨.helper勒索病毒…