用Python机器学习模型预测世界杯结果靠谱吗?

看到kaggle、medium上有不少人用球队的历史数据来进行建模预测,比如用到泊松分布、决策树、逻辑回归等算法,很大程度上能反映强者恒强的现象,比如巴西、英格兰等大概率能进8强,就像高考模拟考试成绩越好,大概率高考也会考得好。

这个和人脑的预测是类似的,建立在你看了足够多的球赛,对每一个国家队、球员、教练、打法等都了如指掌,你才能有充分的判断依据。而且你还不能带有主观的倾向,意大利球迷肯定笃定意大利能夺冠,但他们在预选赛就被淘汰了。

但是阿根廷输沙特、德国输日本这样的黑天鹅事件,不管是AI还是人脑都是没法预测的,否则真成预言者了。买阿根廷、德国赢的人其实是选择了大概率事件,但并没有发生,他们的决策其实是对的。

因为世界杯比赛有很多变动因素,比如裁判规则、球员伤退、排兵布阵,甚至当地环境、食宿也都会有影响,所以在进行AI预测的时候,需要有很多维度的数据进行综合分析,单单从球队的历史成绩来判断,肯定是对准确率会有影响。

这其实是有贝叶斯定理的逻辑在里面,大胆假设,小心求证。

说了一大堆,还没讲如何用AI来预测。我前几天在kaggle看到过一个博主用了GBM梯度提升算法,它通过求损失函数在梯度方向下降的方法,层层改进。

大概描述下步骤:

1、数据准备。

该项目用了【FIFA 1992-2022世界排名】、【1872-2022国家队比赛结果】两个数据集。通过数据预处理对两个数据源进行连接

2、特征工程。

列出对预测比赛结果有影响的特征字段,共37个。特征选取主要根据历史经验、直觉判断,比如过去的比赛积分、过去的进球和损失、比赛的重要性、球队排名、团队排名提升等等。

接着要对各个特征进行相关性检测,判断对预测是否有帮助,如果没有帮助的特征则直接剔除。最后留下11个最重要的特征,用来建模分析。

3、建立模型。

数据处理了,接下来是通过机器学习模型对数据进行训练,然后得出预测结果。

这里用了梯度提升和决策树两个算法,最终选recall最高的,博主测试后选择了梯度提升算法。

算法具体使用操作方法如下:

4、预测世界杯比赛。

搭建好模型,就可以把世界比赛的对阵数据放到模型里进行预测。最终算出来小组赛、十六强赛、八强赛、四强赛、总决赛的得分情况。

从目前看,预测结果其实还是复制历史经验,小组出线情况基本和世界排名情况一致,没有超乎人的经验范围。对于黑马、黑天鹅并没有什么预测能力。

其他预测结果就不一一展示了,哦,最后好像预测是巴西夺冠概率较大。

总之,AI预测世界杯其实是对历史数据的归纳总结,而且完全依赖数据的喂养,能给出相对概率。

这和人的直觉一样,你觉得巴西会夺冠,肯定有一些过往的事实验证了你的直觉,不然就是瞎猜了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/777391.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring高级面试题-2024

Spring 框架中都用到了哪些设计模式? 1. 简单工厂: ○ BeanFactory:Spring的BeanFactory充当工厂,负责根据配置信息创建Bean实例。它是一种工厂模式的应用,根据指定的类名或ID创建Bean对象。2. 工厂方法&#xff…

爬取肯德基餐厅查询中指定地点的餐厅数据

进入肯德基官网 代码编写 import requests import jsonif __name__ __main__:get_url http://www.kfc.com.cn/kfccda/ashx/GetStoreList.ashx?opkeywordheaders {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/1…

开源AI引擎:利用影像处理与目标检测技术对违章建筑排查

一、项目案例介绍 随着城市化进程的加快,城市规划和管理工作面临着前所未有的挑战,违章建筑的排查与处理成为了城市管理中的一项重要任务。传统的违章建筑排查方法依赖于人力巡查,效率低下且难以全面覆盖。为了解决这一问题,现代…

Webgl学习系列-Webgl 入门

Webgl学习系列 第二章 Webgl 入门 文章目录 一、最短的webgl程序二、通过webgl绘制一个点三、webgl三维坐标 一、最短的webgl程序 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title>…

【python基础教程】2. 算法的基本要素与特性

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;python基础教程 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、…

docker 部署 gitlab-ce 16.9.1

文章目录 [toc]拉取 gitlab-ce 镜像创建 gitlab-ce 持久化目录启停脚本配置配置 gitlab-ce编辑 gitlab-ce 配置文件重启 gitlab-ce配置 root 密码 设置中文 gitlab/gitlab-ce(需要科学上网) 拉取 gitlab-ce 镜像 docker pull gitlab/gitlab-ce:16.9.1-ce.0查看镜像是不是有 Vo…

路由的完整使用

多页面和单页面 多页面是指超链接等跳转到另一个HTML文件,单页面是仍是这个文件只是路由改变了页面的一部分结构. 路由的基本使用 使用vue2,则配套的路由需要是第3版. 1)下载vue-router插件 2)引入导出函数 3)new 创建路由对象 4)当写到vue的router后只能写路由对象,因此只…

嵌入式软件工程师都需要安装哪些软件

文章目录 一、编程软件1.keil2.vscode①Chinese&#xff1a;中文②C/C、C/C Extension Pack③CMake、CMake Tools等代码调试运行的工具④Remote-SSH等&#xff0c;关于远程登录linux服务器的插件 3.Pycharm和Anaconda&#xff0c;用来写python脚本和配置环境&#xff0c;PYQT上…

损坏的RAID5csp

1.解题思路 这道题太抽象了&#xff0c;一开始都没太搞懂在讲啥。。。解决该题需要了解条带、磁盘号的定义。 下图以样例2&#xff0c;输入编号为5的块为例&#xff1a; 请务必加上ios::sync_with_stdio(false),否则会超时只有30分 2.满分代码 #include<iostream> us…

ocr之opencv配合paddleocr提高识别率

背景1&#xff1a;在这篇文章编写之前使用到的工具并不是opencv&#xff0c;而是java原有的工具BufferedImage。但因为在使用过程中会频繁切图&#xff0c;放大&#xff0c;模糊&#xff0c;所以导致的jvm内存使用量巨大&#xff0c;分秒中都在以百兆的速度累加内存空间。这种情…

大数据开发扩展shell--尚硅谷shell笔记

大数据开发扩展shell 学习目标 1 熟悉shell脚本的原理和使用 2 熟悉shell的编程语法 第一节 Shell概述 1&#xff09;Linux提供的Shell解析器有&#xff1a; 查看系统中可用的 shell [atguiguhadoop101 ~]$ cat /etc/shells /bin/sh/bin/bash/sbin/nologin/bin/dash/bin/t…

java日志技术——Logback日志框架安装及概述

前言&#xff1a; 整理下学习笔记&#xff0c;打好基础&#xff0c;daydayup!!! 日志 什么是日志 程序中的日志&#xff0c;通常就是一个文件&#xff0c;里面记录的是程序运行过程中的各种信息&#xff0c;通过日志可以进行操作分析&#xff0c;bug定位等 记录日志的方案 程…

构建一个包含mvn命令的Java 17基础镜像

前言 官方提供的openjdk基础镜像&#xff0c;不包含mvn命令&#xff0c;无法用容器来打包代码。 在官方提供的镜像基础上安装maven。 前期准备&#xff0c;需要安装好docker。 一、安装maven 1、下载openjdk基础镜像&#xff0c;执行如下代码。 docker pull openjdk:17-j…

Linux 进程信号:产生信号

目录 一、通过终端按键产生信号 1、signal()函数 2、核心转储 3、ulmit命令 二、调用系统函数向进程发信号 1、kill()函数 2、raise()函数 3、abort()函数 三、发送信号的过程 读端关闭、写端继续写入的情况 如何理解软件条件给进程发送信号: 四、软件条件产生信…

伦敦金与纸黄金有什么区别?怎么选?

伦敦金与纸黄金都是与黄金相关的投资品种&#xff0c;近期黄金市场的上涨吸引了投资者的关注&#xff0c;那投资者想开户入场成为黄金投资者应该选择纸黄金还是伦敦金呢&#xff1f;两者有何区别呢&#xff1f;下面我们就来讨论一下。 伦敦金是一种起源于伦敦的标准化黄金交易合…

HarmonyOS实战开发-实现带有卡片的电影应用

介绍 本篇Codelab基于元服务卡片的能力&#xff0c;实现带有卡片的电影应用&#xff0c;介绍卡片的开发过程和生命周期实现。需要完成以下功能&#xff1a; 元服务卡片&#xff0c;用于在桌面上添加2x2或2x4规格元服务卡片。关系型数据库&#xff0c;用于创建、查询、添加、删…

FMEA的本质——FMEA软件

免费试用FMEA软件-免费版-SunFMEA FMEA&#xff0c;即故障模式与影响分析&#xff08;Failure Modes and Effects Analysis&#xff09;&#xff0c;是一种预防性的质量工具&#xff0c;广泛应用于各种行业和领域&#xff0c;特别是在制造业、航空航天、医疗设备、汽车工业等领…

AGV全电动无人堆高车选购时要注意的4点

AGV 随着机器人技术在中国的快速发展&#xff0c;国内企业开始推出区别于传统叉车的无人叉车&#xff0c;旨在为企业降本增效&#xff0c;降低人工成本与对人的依赖。同时&#xff0c;也将人工从危险恶劣的环境中解放出来。随着技术的持续提升&#xff0c;如今&#xff0c;无人…

DVB-S系统仿真学习

DVB-S系统用于卫星电视信号传输&#xff0c;发送端框图如下所示 扰码 实际数字通信中&#xff0c;载荷数据的码元会出现长连0或长连1的情况&#xff0c;不利于接收端提取时钟信号&#xff0c;同时会使得数据流中含有大量的低频分量&#xff0c;使得QPSK调制器的相位长时间不变…

【Frida】【Android】05_Objection实战

&#x1f6eb; 系列文章导航 【Frida】【Android】01_手把手教你环境搭建 https://blog.csdn.net/kinghzking/article/details/136986950【Frida】【Android】02_JAVA层HOOK https://blog.csdn.net/kinghzking/article/details/137008446【Frida】【Android】03_RPC https://bl…