在这篇论文中,我们提出了FedCoin,一个基于区块链的点对点支付系统,专为联邦学习设计,以实现基于Shapley值的实际利润分配。在FedCoin系统中,区块链共识实体负责计算SV,并且新的区块是基于“Shapley证明”(PoSap)协议创建的。这与流行的比特币网络不同,在比特币网络中,共识实体通过解决无意义的难题来“挖矿”生成新区块。
FedCoin是首次尝试将区块链技术应用于联邦学习激励机制研究中的创新实践。这一举措为那些拥有计算资源但缺乏本地数据的实体提供了参与联邦学习的新机遇,使它们能够通过贡献计算资源获得相应的激励回报,进而推动整个联邦学习生态系统的健康发展。
在本工作中,我们的目标并非减少计算复杂度,而是建立一种机制,使得原本可能被浪费的分布式计算资源得以利用,协助联邦学习系统计算SV。
1.初步说明
每个样本 ( x i , y i ) (x_i,y_i) (xi,yi)
第i轮的模型参数记为: w i w_i wi
第t轮下的损失函数 F i ( w ) = ℓ ( x i , y i ; w t ) F_i(w)=\ell(x_i,y_i;w_t) Fi(w)=ℓ(xi,yi;wt)
第k个客户端有一个本地数据集 D k D_k Dk, n k = ∣ D k ∣ n_k=|D_k| nk=∣Dk∣表示第k个客户端拥有的数据量。
全局的数据集记为 D = { D 1 , . . . , D k } D=\{D_1,...,D_k\} D={D1,...,Dk}, n = ∣ D ∣ = ∑ k = 1 K n k n=|D|=\sum^K_{k=1}n_k n=∣D∣=∑k=1Knk
目标的优化函数为 min w ∈ R d F ( w ) = 1 n ∑ k = 1 K ∑ i ∈ D k F i ( w ) ( 1 ) \min_{w\in R^d}F(w)=\frac{1}{n}\sum^K_{k=1}\sum_{i\in D_k}F_i(w)\space(1) minw∈RdF(w)=n1∑k=1K∑i∈DkFi(w) (1)
这个优化问题通常通过基于随机梯度下降(SGD)的方法来解决。举例来说,基于当前模型wt,联邦平均算法计算客户端k上的平均梯度gt,
公式如下: g t k = 1 n k ∑ i ∈ D k ∇ F i ( w t ) g_t^k = \frac{1}{n_k} \sum_{i \in D_k} \nabla F_i(w_t) gtk=nk1∑i∈Dk∇Fi(wt)
然后,每个客户端使用该梯度来更新其本地模型,更新规则为:
w t + 1 k = w t − η g t k w_{t+1}^k = w_t - \eta g_t^k wt+1k=wt−ηgtk
最后,FL服务器将所有客户端的本地模型聚合成全局FL模型。聚合过程由聚合函数A完成,其形式如下:
w t + 1 = A ( { w t + 1 k ∣ k = 1 , … , K } ) w_{t+1} = A(\{ w_{t+1}^k | k = 1, \ldots, K \}) wt+1=A({wt+1k∣k=1,…,K})
2.FedCoin
2.1 网络概述
在作者的系统中存在两个参与者网络:
1)联邦学习网络
2)点对点区块链网络
联邦学习模型请求者或联邦学习训练任务请求者指的是需要训练联邦学习网络并拥有预算V的实体。
客户端可以通过训练获得报酬和激励(TrainPrice)
聚合会产生一个聚合激励(ComPrice)
向区块链网络转移会产生一笔处理费(SapPrice)
总的花费应该 T r a i n P r i c e + C o m P r i c e + S a p P r i c e ≤ V TrainPrice+ComPrice+SapPrice \leq V TrainPrice+ComPrice+SapPrice≤V以维持支付平衡,而无需依赖将价值从外部转移至此系统。
服务器在每次全局更新之后,会向区块链发送一个任务,计算每个FL客户端的贡献。然后,区块链网络中的共识节点共同计算SV。获胜者获得奖励:TrainPrice+SapPrice。获胜者根据各自的SVs按比例将ComPrice分配给FL客户端,通过在区块链中创建交易来实现。
联邦学习网络和区块链网络之间靠一种特殊类型的任务产生联系,
一个特殊任务包括接收到的本地更新集合 W = { w k ∣ k = 1 , . . . , K } W = \{w_k|k = 1, . . . , K\} W={wk∣k=1,...,K},聚合函数 A A A,损失函数 F ( w ) F(w) F(w),以及每个更新轮次的SapPrice和TrainPrice的值。随着训练轮次的增加,SapPrice和TrainPrice会减少,并且用于训练的总付款可以平均分配或不平均分配给每一轮。
2.2 挖矿算法
挖矿算法如下:
如何创建一个区块:
每当矿工接收到S和时间时,矿工计算所有收到的S的平均结果S(第16行)。然后,矿工计算自己的S与S之间的距离P。当距离不大于挖矿难度D时,矿工成为赢家并生成新的区块Blk(第18行)。
存在一些改进的空间,我觉得可以维持一个队列,只保存一段时间的产生的区块,因为刚开始计算出的S的稳定性不高,之后计算的结果会越来越接近于真实值
2.3 区块验证的算法
- 获胜者的 S t S_t St减去获胜者的 S t ‾ \overline {S_t} St平均的需要满足 ∣ ∣ S t − S t ‾ ∣ ∣ p < = D ||S_t-\overline{S_t}||_p <=D ∣∣St−St∣∣p<=D
- 本机计算出的 S ‾ \overline S S需要满足 ∣ ∣ S ‾ − S t ‾ ∣ ∣ p < = D ||\overline S-\overline{S_t}||_p <=D ∣∣S−St∣∣p<=D(我认为是防止winner机器作弊,同时防止本地机器偷懒)要求区块的S值应足够接近本地聚合S
- 当前区块ID应最大,以确保只有最长的链可接受。
2.4 挖矿难度
挖掘新区块的难度水平可以动态调整:
影响难度更新的两个主要因素是:
1)矿工的总挖矿能力
2)生成区块的速度。在相同的挖矿能力下,随着区块生成速度的增加,难度级别应该降低。在相同的区块生成速度下,随着挖矿能力的增加,难度级别应该增加
3)(我编的:)是否应该考虑一下任务的总量
2.5 支付算法
在FedCoin系统中,一个FL模型请求者首先通过向FL服务器存入V个FedCoins来启动。V的价值不应大于请求者的FL模型的价值。为了在FL客户端、区块链矿工和FL服务器之间分配V,所有实体都应注册一个交易账户。
TrainPrice:支付给FL客户端;
ComPrice:支付给FL服务器用于处理模型聚合;
SapPrice:支付给区块链网络矿工用于计算每个客户端的Shapley值。
这种分配可以由预先约定的智能合约确定。例如,分配合约可以指定TrainPrice:ComPrice:SapPrice=7:1:2。那么,TrainPrice=0.7V,ComPrice=0.1V,而SapPrice=0.2V。
3. 实验结果
对于给定的数据集,高EMD值表示数据质量低。每个客户端类型的数据质量通过EMD来衡量,如表2所示。我们可以观察到,从T0到T9,数据质量呈线性递减。
随着质量等级从T1降至T9,Shapley值减小。此外,只有T0到T4类型的值为正,表明只有一半的客户端可以积极贡献于模型准确度的提升。这也表明我们的PoSap可以有效促进高质量数据在协作FL应用场景中的推广。对于T5到T9类型的负Shapley值意味着这些客户端可能会误导模型训练。