【数据结构-堆】堆

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

  • 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老
  • 导航
    • 檀越剑指大厂系列:全面总结 java 核心技术点,如集合,jvm,并发编程 redis,kafka,Spring,微服务,Netty 等
    • 常用开发工具系列:罗列常用的开发工具,如 IDEA,Mac,Alfred,electerm,Git,typora,apifox 等
    • 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
    • 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

博客目录

    • 一.堆简介
      • 1.什么是堆?
      • 2.大顶堆
      • 3.小顶堆
      • 4.JDK 的优先队列
      • 5.建堆
    • 二.堆题目
      • 1.堆排序
      • 2.数组中第 K 大元素-力扣 215 题
      • 3.数据流中第 K 大元素-力扣 703 题
      • 4.数据流的中位数-力扣 295 题

一.堆简介

1.什么是堆?

堆(Heap)是一种重要的数据结构,通常用于实现优先队列和一些其他算法。堆具有以下主要特点:

  1. 完全二叉树结构: 堆通常是一个完全二叉树,这意味着树中的每个节点都有最多两个子节点,除了最后一层,其他层都是满的。这种特性使得堆可以有效地使用数组来表示,因为数组的索引操作非常高效。

  2. 堆序性质: 堆分为两种主要类型,最小堆和最大堆,它们都具有堆序性质。在最小堆中,每个节点的值都小于或等于其子节点的值,根节点的值最小。在最大堆中,每个节点的值都大于或等于其子节点的值,根节点的值最大。

  3. 堆的操作: 堆支持一些基本操作,包括插入元素、删除根节点(最小或最大元素)、查找根节点(最小或最大元素),以及堆化操作(将一个无序数组或树转化为堆)。这些操作的时间复杂度通常为 O(log n),其中 n 是堆中元素的数量。

  4. 应用: 堆广泛用于解决各种问题,如优先队列(用于任务调度、Dijkstra 算法等)、堆排序算法、求中位数、Top K 问题、图算法(Prim 和 Kruskal 算法中的最小生成树等)等。由于其高效的插入和删除操作,堆在这些问题中表现出色。

  5. 实现: 堆可以用数组来表示。在数组中,根节点通常位于索引 0,对于节点 i,其左子节点位于 2i + 1,右子节点位于 2i + 2。这种表示方法使得堆的操作更加高效。堆可以是最小堆或最大堆,具体类型取决于问题需求。

  6. 平衡性: 堆是一种自平衡数据结构,即在插入和删除操作后,堆仍然保持堆序性质。这是通过堆化操作来实现的,它可以向上(上滤)或向下(下滤)调整节点的位置,以满足堆的要求。

堆是一种非常有用的数据结构,用于解决许多与优先级相关的问题和算法。最小堆和最大堆的差异在于它们的堆序性质,但它们都具有相似的操作和实现方式。理解堆的基本原理和操作对于编写高效的算法非常重要。

2.大顶堆

以大顶堆为例,相对于之前的优先级队列,增加了堆化等方法

public class MaxHeap {int[] array;int size;public MaxHeap(int capacity) {this.array = new int[capacity];}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {//获取堆顶元素return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {//获取堆顶元素int top = array[0];//交换堆顶和堆底swap(0, size - 1);//容量--size--;//堆顶下沉down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素* @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {//默认插入位置在最后的indexint child = size;while (child > 0) {//父节点的位置int parent = (child - 1) / 2;//上浮if (offered > array[parent]) {array[child] = array[parent];} else {break;}//把父节点的坐标给childchild = parent;}//不要忘了赋值array[child] = offered;}public MaxHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后一个非叶子节点  size / 2 - 1,并不断往前遍历for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {//找到左孩子坐标int left = parent * 2 + 1;//找到右孩子坐标int right = left + 1;int max = parent;if (left < size && array[left] > array[max]) {max = left;}if (right < size && array[right] > array[max]) {max = right;}if (max != parent) { // 找到了更大的孩子swap(max, parent);down(max);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}public static void main(String[] args) {int[] array = {1, 2, 3, 4, 5, 6, 7};MaxHeap maxHeap = new MaxHeap(array);System.out.println(Arrays.toString(maxHeap.array));}
}

3.小顶堆

public class MinHeap {int[] array;int size;public MinHeap(int capacity) {this.array = new int[capacity];}public boolean isFull() {return size == array.length;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素* @return 是否添加成功*/public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public MinHeap(int[] array) {this.array = array;this.size = array.length;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点  size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}
}

4.JDK 的优先队列

// 大顶堆
private PriorityQueue<Integer> left = new PriorityQueue<>( (a, b) -> b-a);
// 默认是小顶堆
private PriorityQueue<Integer> right = new PriorityQueue<>();

5.建堆

  1. 找到最后一个非叶子节点
  2. 从后向前,对每个节点执行下潜

一些规律

  • 一棵满二叉树节点个数为 2 h − 1 2^h-1 2h1,如下例中高度 h = 3 h=3 h=3 节点数是 2 3 − 1 = 7 2^3-1=7 231=7
  • 非叶子节点范围为 [ 0 , s i z e / 2 − 1 ] [0, size/2-1] [0,size/21]

算法时间复杂度分析

image-20230213114024607

下面看交换次数的推导:设节点高度为 3

本层节点数高度下潜最多交换次数(高度-1)
4567 这层410
23 这层221
1 这层132

每一层的交换次数为: 节点个数 ∗ 此节点交换次数 节点个数*此节点交换次数 节点个数此节点交换次数,总的交换次数为

$$
\begin{aligned}
& 4 * 0 + 2 * 1 + 1 * 2 \

& \frac{8}{2}*0 + \frac{8}{4}*1 + \frac{8}{8}*2 \

& \frac{8}{2^1}*0 + \frac{8}{2^2}*1 + \frac{8}{2^3}*2\

\end{aligned}
$$

∑ i = 1 h ( 2 h 2 i ∗ ( i − 1 ) ) \sum_{i=1}^{h}(\frac{2^h}{2^i}*(i-1)) i=1h(2i2h(i1))

在 https://www.wolframalpha.com/ 输入

Sum[\(40)Divide[Power[2,x],Power[2,i]]*\(40)i-1\(41)\(41),{i,1,x}]

推导出

2 h − h − 1 2^h -h -1 2hh1

其中 2 h ≈ n 2^h \approx n 2hn h ≈ log ⁡ 2 n h \approx \log_2{n} hlog2n,因此有时间复杂度 O ( n ) O(n) O(n)

二.堆题目

1.堆排序

算法描述

  1. heapify 建立大顶堆
  2. 将堆顶与堆底交换(最大元素被交换到堆底),缩小并下潜调整堆
  3. 重复第二步直至堆里剩一个元素

可以使用之前课堂例题的大顶堆来实现

int[] array = {1, 2, 3, 4, 5, 6, 7};
MaxHeap maxHeap = new MaxHeap(array);
System.out.println(Arrays.toString(maxHeap.array));
//判断堆的剩余元素个数
while (maxHeap.size > 1) {//交换堆顶和堆底,把最大的移到堆底maxHeap.swap(0, maxHeap.size - 1);//将堆底的元素排除maxHeap.size--;//堆顶的元素需要下沉maxHeap.down(0);
}
System.out.println(Arrays.toString(maxHeap.array));

2.数组中第 K 大元素-力扣 215 题

小顶堆(可删去用不到代码)

class MinHeap {int[] array;int size;public MinHeap(int capacity) {array = new int[capacity];}private void heapify() {for (int i = (size >> 1) - 1; i >= 0; i--) {down(i);}}public int poll() {swap(0, size - 1);size--;down(0);return array[size];}public int poll(int index) {swap(index, size - 1);size--;down(index);return array[size];}public int peek() {return array[0];}public boolean offer(int offered) {if (size == array.length) {return false;}up(offered);size++;return true;}public void replace(int replaced) {array[0] = replaced;down(0);}private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) >> 1;if (offered < array[parent]) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}private void down(int parent) {int left = (parent << 1) + 1;int right = left + 1;int min = parent;if (left < size && array[left] < array[min]) {min = left;}if (right < size && array[right] < array[min]) {min = right;}if (min != parent) {swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}
}

题解 1

public int findKthLargest(int[] numbers, int k) {MinHeap heap = new MinHeap(k);for (int i = 0; i < k; i++) {heap.offer(numbers[i]);}for (int i = k; i < numbers.length; i++) {if(numbers[i] > heap.peek()){heap.replace(numbers[i]);}}return heap.peek();
}

求数组中的第 K 大元素,使用堆并不是最佳选择,可以采用快速选择算法

题解 2

public int findKthLargest(int[] numbers, int k) {//小顶堆,先加入2个PriorityQueue<Integer> queue = new PriorityQueue<>();for (int i = 0; i < k; i++) {queue.add(numbers[i]);}//再加入后面剩下的for (int i = k; i < numbers.length; i++) {if (numbers[i] > queue.peek()) {queue.poll();queue.add(numbers[i]);}}return queue.peek();
}

3.数据流中第 K 大元素-力扣 703 题

上题的小顶堆加一个方法

class MinHeap {// ...public boolean isFull() {return size == array.length;}
}

题解 1

class KthLargest {private MinHeap heap;public KthLargest(int k, int[] nums) {heap = new MinHeap(k);for(int i = 0; i < nums.length; i++) {add(nums[i]);}}public int add(int val) {if(!heap.isFull()){heap.offer(val);} else if(val > heap.peek()){heap.replace(val);}return heap.peek();}}

求数据流中的第 K 大元素,使用堆最合适不过

题解 2

private PriorityQueue<Integer> queue;
private int k = 0;public E03Leetcode703_02(int k, int[] nums) {this.k = k;queue = new PriorityQueue();for (int num : nums) {add(num);}
}// 此方法会被不断调用, 模拟数据流中新来的元素
public int add(int val) {if (queue.size() < k) {queue.offer(val);} else if (queue.peek() < val) {queue.poll();queue.offer(val);}return queue.peek();
}

4.数据流的中位数-力扣 295 题

可以扩容的 heap, max 用于指定是大顶堆还是小顶堆

public class Heap {int[] array;int size;boolean max;public int size() {return size;}public Heap(int capacity, boolean max) {this.array = new int[capacity];this.max = max;}/*** 获取堆顶元素** @return 堆顶元素*/public int peek() {return array[0];}/*** 删除堆顶元素** @return 堆顶元素*/public int poll() {int top = array[0];swap(0, size - 1);size--;down(0);return top;}/*** 删除指定索引处元素** @param index 索引* @return 被删除元素*/public int poll(int index) {int deleted = array[index];swap(index, size - 1);size--;down(index);return deleted;}/*** 替换堆顶元素** @param replaced 新元素*/public void replace(int replaced) {array[0] = replaced;down(0);}/*** 堆的尾部添加元素** @param offered 新元素*/public void offer(int offered) {if (size == array.length) {grow();}up(offered);size++;}private void grow() {int capacity = size + (size >> 1);int[] newArray = new int[capacity];System.arraycopy(array, 0,newArray, 0, size);array = newArray;}// 将 offered 元素上浮: 直至 offered 小于父元素或到堆顶private void up(int offered) {int child = size;while (child > 0) {int parent = (child - 1) / 2;boolean cmp = max ? offered > array[parent] : offered < array[parent];if (cmp) {array[child] = array[parent];} else {break;}child = parent;}array[child] = offered;}public Heap(int[] array, boolean max) {this.array = array;this.size = array.length;this.max = max;heapify();}// 建堆private void heapify() {// 如何找到最后这个非叶子节点  size / 2 - 1for (int i = size / 2 - 1; i >= 0; i--) {down(i);}}// 将 parent 索引处的元素下潜: 与两个孩子较大者交换, 直至没孩子或孩子没它大private void down(int parent) {int left = parent * 2 + 1;int right = left + 1;int min = parent;if (left < size && (max ? array[left] > array[min] : array[left] < array[min])) {min = left;}if (right < size && (max ? array[right] > array[min] : array[right] < array[min])) {min = right;}if (min != parent) { // 找到了更大的孩子swap(min, parent);down(min);}}// 交换两个索引处的元素private void swap(int i, int j) {int t = array[i];array[i] = array[j];array[j] = t;}
}

题解 1

private Heap left = new Heap(10, false);
private Heap right = new Heap(10, true);/**为了保证两边数据量的平衡<ul><li>两边数据一样时,加入左边</li><li>两边数据不一样时,加入右边</li></ul>但是, 随便一个数能直接加入吗?<ul><li>加入左边前, 应该挑右边最小的加入</li><li>加入右边前, 应该挑左边最大的加入</li></ul>*/
public void addNum(int num) {if (left.size() == right.size()) {right.offer(num);left.offer(right.poll());} else {left.offer(num);right.offer(left.poll());}
}/*** <ul>*     <li>两边数据一致, 左右各取堆顶元素求平均</li>*     <li>左边多一个, 取左边元素</li>* </ul>*/
public double findMedian() {if (left.size() == right.size()) {return (left.peek() + right.peek()) / 2.0;} else {return left.peek();}
}

本题还可以使用平衡二叉搜索树求解,不过代码比两个堆复杂

题解 2

/*** 为了保证两边数据量的平衡* <ul>* <li>两边个数一样时,左边个数加一</li>* <li>两边个数不一样时,右边个数加一</li>* </ul>* 但是, 随便一个数能直接加入吗?* <ul>* <li>左边个数加一时, 把新元素加在右边,弹出右边最小的加入左边</li>* <li>右边个数加一时, 把新元素加在左边,弹出左边最小的加入右边</li>* </ul>*/
public void addNum(int num) {if (left.size() == right.size()) {right.offer(num);left.offer(right.poll());} else {left.offer(num);right.offer(left.poll());}
}/*** <ul>*     <li>两边数据一致, 左右各取堆顶元素求平均</li>*     <li>左边多一个, 取左边堆顶元素</li>* </ul>*/
public double findMedian() {if (left.size() == right.size()) {return (left.peek() + right.peek()) / 2.0;} else {return left.peek();}
}// 大顶堆
private PriorityQueue<Integer> left = new PriorityQueue<>((a, b) -> Integer.compare(b, a)
);
// 默认是小顶堆
private PriorityQueue<Integer> right = new PriorityQueue<>();

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/77662.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

异步FIFO设计的仿真与综合技术(2)

概述 本文主体翻译自C. E. Cummings and S. Design, “Simulation and Synthesis Techniques for Asynchronous FIFO Design 一文&#xff0c;添加了笔者的个人理解与注释&#xff0c;文中蓝色部分为笔者注或意译。前文链接&#xff1a;异步FIFO设计的仿真与综合技术&#xff0…

Java集合面试

文章目录 Java集合框架说说有哪些常见的集合&#xff1f;ArrayList和LinkedList的区别&#xff1f;List和Set的区别&#xff1f;HashMap的数据结构&#xff1f;把你了解的所有都讲一讲&#xff1f;数据结构&#xff1a; put流程Hashmap的resize方法的执行过程&#xff1f;get流…

【算法与数据结构】530、LeetCode二叉搜索树的最小绝对差

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;二叉搜索树的性质是左子树的所有节点键值小于中间节点键值&#xff0c;右子树的所有节点键值大于中间节…

招聘寒冬中,Python 程序员如何突出重围?

在当前的就业市场中&#xff0c;许多人都在感叹“招聘寒冬”。 尤其是对于 Python 程序员来说&#xff0c;似乎面临着更大的挑战。 然而&#xff0c;我要说的是&#xff0c;挑战与机遇并存&#xff0c;只要我们能够找准自己的定位&#xff0c;提升自己的技能&#xff0c;Pyth…

运用谷歌浏览器的开发者工具,模拟搜索引擎蜘蛛抓取网页

第一步&#xff1a;按压键盘上的F12键打开开发这工具&#xff0c;并点击右上角三个小黑点 第二步&#xff1a;选择More tools 第三步&#xff1a;选择Network conditions 第四步&#xff1a;找到User agent一列&#xff0c;取消复选框的勾选 第五步&#xff1a;选择谷歌爬虫…

Spring框架中的Resource接口是什么,以及它在加载和访问资源时的关键作用

文章目录 什么是 Resource 接口&#xff1f;使用 Resource 加载资源使用 Resource 访问文件系统资源总结 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;Java框架 ✨文章内…

通过小程序实现微信扫码授权登录,网站接入微信扫码登录功能(永久免费)

需求 网站如果想要实现微信扫码登录其实有很多种方案&#xff0c;常见的方案就是微信开放平台和微信公众号服务号。前者是目前大部分网站并且是微信认可的一种方式&#xff0c;后者是开发者发现服务号具备扫码关注后即可获取用户基本信息的能力后而开发的一种方式。 而这两者…

【深入解析spring cloud gateway】08 Reactor 知识扫盲

一、响应式编程概述 1.1 背景知识 为了应对高并发服务器端开发场景&#xff0c;在2009 年&#xff0c;微软提出了一个更优雅地实现异步编程的方式——Reactive Programming&#xff0c;我们称之为响应式编程。随后&#xff0c;Netflix 和LightBend 公司提供了RxJava 和Akka S…

腾讯云centos7.6安装部署备忘

1.Mysql 1.1 安装mysql wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm rpm -ivh mysql-community-release-el7-5.noarch.rpm yum install mysql-community-server 1.1.1 安装后重启 service mysqld restart 1.1.2 初次安装mysql&#xff0c;root账…

【Python】【Fintech】用Python和蒙特卡洛法预测投资组合未来收益

【背景】 想利用蒙特卡洛方法和yahoo,stooq等财经网站上的数据快速预测特定portfolio的收益。 【分析】 整个程序的功能包括 读取json中的portfolio组合创建蒙特卡洛模拟预测收益的算法创建从财经网站获得特定投资组合数据,并根据2的算法获得该Index或Portfolio收益预测结…

ARTS打卡第四周之删除链表倒数第几个节点、gdb start命令、扩散模型、如何学习分享

Algorithm 题目&#xff1a;删除链表倒数第 n 个结点 分析&#xff1a;可以把通过两个结点进行标记&#xff0c;有一个节点需要遍历得快点&#xff0c;简称为快结点&#xff0c;有个结点遍历得慢&#xff0c;简称为慢结点。快结点先停在正数第 n 个结点处&#xff0c;然后快慢…

蓝桥杯打卡Day7

文章目录 阶乘的末尾0整除问题 一、阶乘的末尾0IO链接 本题思路&#xff1a;由于本题需要求阶乘的末尾0&#xff0c;由于我们知道2*510可以得到一个0&#xff0c;那么我们就可以找出2的数和5的数&#xff0c;但是由于是阶乘&#xff0c;所以5的数量肯定是小于2的数量&#xf…

车载Android应用开发与分析 - 初试 SystemUI Plugin

在前面的视频、文章中我们介绍完了整个车载Android应用开发所需要的基础知识&#xff1a; 【视频文稿】车载Android应用开发与分析 - 走进车载操作系统 - 掘金【视频文稿】车载Android应用开发与分析 - AOSP的下载与编译 - 掘金【视频文稿】车载Android应用开发与分析 - 开发系…

Elasticsearch:为具有许多 and/or 高频术语的 top-k 查询带来加速

作者&#xff1a;Adrien Grand Disjunctive queries&#xff08;term_1 OR term_2 OR ... OR term_n&#xff09;非常常用&#xff0c;因此在提高查询评估效率方面它们受到了广泛关注。 Apache Lucene 对于评估 disjunctive queries 有两个主要优化&#xff1a;一方面用于详尽评…

opencv(python)视频按帧切片/cv2.VideoCapture()用法

一、介绍 cv2.VideoCapture是OpenCV中一个用于捕捉视频的类。它可以访问计算机的摄像头&#xff0c;或从视频文件中读取图像。通过cv2.VideoCapture&#xff0c;用户可以轻松地捕捉、保存、编辑和传输视频流数据。 使用cv2.VideoCapture可以实现以下功能&#xff1a; 1. 打开…

计算机网络第四节 数据链路层

一&#xff0c;引入数据链路层的目的 1.目的意义 数据链路层是体系结构中的第二层&#xff1b; 从发送端来讲&#xff0c;物理层可以将数据链路层交付下来的数据&#xff0c;装换成光&#xff0c;电信号发送到传输介质上了 从接收端来讲&#xff0c;物理层能将传输介质的光&…

【Vue】一文让你进入Vue的大门

Vue简介 官网 ● 英文官网 ● 中文官网 介绍与描述 Vue历史 Vue 是一套用来动态构建用户界面的渐进式JS框架 构建用户界面&#xff1a;把数据通过某种办法变成用户界面 渐进式&#xff1a;Vue可以自底向上逐层的应用&#xff0c;简单应用只需要一个轻量小巧的核心库&#xff0c…

python 语法入门

文章目录 前言python 语法入门1. 语句分隔符2. 注释3. pep8规范4. 变量5. 扩展5.1. 运行此行代码的过程 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会…

【LeetCode刷题篇零】一些基础算法知识和前置技能(下)

数组常用技巧 使用数组代替Map 使用另一个数组来统计每个数字出现的次数&#xff0c;数组的下标作为key, 数组的值作为value&#xff0c; 将数字作为数组的下标索引&#xff0c;数组里的值存储该数字出现的次数&#xff0c;原理有点类似桶排序中使用的计数数组。 比如这里如…

小程序赖加载刷新数据页面数据堆叠问题debug

目录 项目所需 原生写赖加载存在的bug 解决问题思路及代码实现 思路&#xff1a; 代码实现&#xff1a; 列表.wxml 列表.js Wenjain_shanchu.js Wenjain_shanchu.json Wenjain_shanchu.wxml shouye.js ⭐️ 好书推荐 【内容简介】 项目所需 某高校大一新生入学&am…