YOLOv5 | 鬼魅(幽灵)卷积 | 改进Ghost卷积轻量化网络

目录

原理简介

代码实现

yaml文件实现

检查是否添加执行成功 

完整代码分享 

论文创新必备

启动命令


由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。一种新颖的 Ghost 模块,可以通过廉价的操作生成更多的特征图。基于一组内在特征图,以低廉的成本应用一系列线性变换来生成许多鬼特征图,这些特征图可以充分揭示内在特征背后的信息。Ghost 模块可以作为即插即用组件来升级现有的卷积神经网络。 Ghostbottleneck旨在堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。Ghost 模块是基线模型中卷积层的令人印象深刻的替代品,并且GhostNet 可以比 MobileNetV3 实现更高的识别性能,并且在 ImageNet ILSVRC2012 分类数据集上具有相似的计算成本。

 ⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀

       YOLOv5涨点专栏:http://t.csdnimg.cn/CNQ32

YOLOv8涨点专栏:http://t.csdnimg.cn/tnoL5

YOLOv7专栏:http://t.csdnimg.cn/HsyvQ

💡魔改网络、复现论文、优化创新💡 

首先引入 Ghost 模块,利用一些小过滤器从原始卷积层生成更多特征图,然后开发一个具有极其高效架构和高性能的新 GhostNet。

原理简介
卷积层和建议的 Ghost 模块的图示,用于输出相同数量的特征图。 Φ 代表廉价操作

深度卷积神经网络通常由大量卷积组成,这会导致巨大的计算成本。尽管 MobileNet 和 ShuffleNet 等最近的工作引入了深度卷积或洗牌操作,以使用较小的卷积滤波器(浮点数操作)构建高效的 CNN,但剩余的 1 × 1 卷积层仍然会占用大量内存和失败。

其中*是卷积运算,b是偏置项,Y ∈ Rh′×w′×n是n个通道的输出特征图,f ∈ Rc×k×k×n是该层的卷积滤波器。另外,h′和w′分别是输出数据的高度和宽度,k×k分别是卷积滤波器f的内核大小。在这个卷积过程中,所需的 FLOP 数量可以计算为 n·h′·w′·c·k·k,由于滤波器数量 n 和通道数量 c 通常为数十万,因此该数量通常高达数十万。非常大(例如 256 或 512)。

利用 Ghost 模块的优点,我们引入了专为小型 CNN 设计的 Ghost 瓶颈(G-bneck)。如图 3 所示,Ghost 瓶颈似乎类似于 ResNet [16] 中的基本残差块,其中集成了多个卷积层和快捷方式。所提出的 Ghost 瓶颈主要由两个堆叠的 Ghost 模块组成。第一个 Ghost 模块充当扩展层,增加通道数量。我们将输出通道数与输入通道数之比称为扩展比。第二个 Ghost 模块减少了通道数量以匹配快捷路径。然后将快捷方式连接在这两个 Ghost 模块的输入和输出之间。批量标准化(BN)[25]和ReLU非线性在每一层之后应用,除了按照MobileNetV2的建议在第二个Ghost模块之后不使用ReLU。上述Ghost瓶颈是针对步长=1的情况。对于stride=2的情况,捷径由下采样层实现,并在两个Ghost模块之间插入stride=2的深度卷积。实际上,这里的 Ghost 模块中的主要卷积是逐点卷积,以提高其效率。 

代码实现
class C3Ghost(C3):"""C3 module with GhostBottleneck()."""def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channelsself.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))class GhostBottleneck(nn.Module):"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""def __init__(self, c1, c2, k=3, s=1):"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""super().__init__()c_ = c2 // 2self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pwDWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dwGhostConv(c_, c2, 1, 1, act=False),  # pw-linear)self.shortcut = (nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity())def forward(self, x):"""Applies skip connection and concatenation to input tensor."""return self.conv(x) + self.shortcut(x)

ghost模型的整个结构照搬了mobilenetv3,只是把基本单元给替换掉了,将原本的一步卷积变为两步卷积,第一步首先进行常规卷积,但是减少了输出通道数,第二步在第一步的基础上进行深度可分离卷积(仅取第一步),这里深度可分离卷积跟常规深度可分离卷积有点区别,常规深度可分离卷积(仅取第一步)的输入输出通道数完全相等,卷积核数量也等于输入通道数,这里输出通道数可能是输入通道数的整数倍,卷积核数量等于输出通道数。此外,第二步卷积还有并行的一个连接分支,这个分支直接就是第一步卷积的输出。ghost卷积模块的输出通道数等于第一步卷积后的通道数c加上第二步卷积后的通道数n*c,所以最终通道数为(n+1)*c。此操作的依据是经过观察,发现大部分卷积操作后,输出的特征图很多通道之间存在很高的相似性,那我们就可以经过第一步卷积得到那些没有相似性的通道,然后经过第二步卷积得到剩余那些有相似性的通道

yaml文件实现
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3Ghost, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3Ghost, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3Ghost, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3Ghost, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3Ghost, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3Ghost, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3Ghost, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3Ghost, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
检查是否添加执行成功 

出现的网络结构变成C3变成C3ghost,则说明添加成功

完整代码分享 

链接: https://pan.baidu.com/s/1N3-7dEdVoMC-QuIGUFpASg?pwd=dwey 提取码: dwey 复制这段内容后打开百度网盘手机App,操作更方便哦

如果报错,请看

解决Yolov5的RuntimeError: result type Float can‘t be cast to the desired output type long int 问题_yolov5 runtimeerror: result type float can't be ca-CSDN博客

启动命令
python train.py model=/path/yolov5_ghost.yaml ...
论文创新必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/776193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业计算机服务器中了mkp勒索病毒怎么办,mkp勒索病毒解密流程步骤

在网络技术飞速发展的今天,越来越多的企业走向了数字化办公模式,网络为企业的生产运营提高了效率,为企业带来了极大便利,但网络是一把双刃剑,在为人们提供便利的同时也会带来数据安全问题,网络数据安全一直…

智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码) 源码设计 % ------------------------------------------------------------------------------------------------…

如何借用 NTFS 交换数据流 实现隐藏文件?如何使用【文件包含】PHP伪协议?不同操作系统如何实现文件隐藏和木马伪装?

如何借用 NTFS 交换数据流 实现隐藏文件?如何使用【文件包含】PHP伪协议?不同操作系统如何实现文件隐藏和木马伪装? NTFS交换数据流(Alternate Data Streams, ADS)是NTFS文件系统特有的一种功能,它允许在同一个文件名下存储多个数据流。除了默认的数据流(通常用于存储文…

29---Nor Flash电路设计

视频链接 Nor Flash硬件电路设计01_哔哩哔哩_bilibili NOR FLASH电路设计 1、NOR FLASH介绍 NOR Flash最早是由Intel公司于1988年开发出的。 NOR Flash虽容量小但速度快,最大特点是支持芯片内执行(XIP),即程序可以直接在NOR flash的片内…

欧拉系统部署ftp服务器

1.先检查是否已经安装ftp vsftpd -v 2.安装vsftpd yum install vsftpd 3.修改ftp配置文件 vim /etc/vsftpd/vsftpd.conf 4.启动ftp systemctl start vsftpd 5.查看是否启动 systemctl status vsftpd 6.设置为开机自启 systemctl enable vsftpd 7.查看端口是否开启 net…

uniapp 微信小程序 canvas 手写板获取书写内容区域并输出

uni.canvasGetImageData 返回一个数组,用来描述 canvas 区域隐含的像素数据,在自定义组件下,第二个参数传入自定义组件实例 this,以操作组件内 组件。 // 获取目标 canvas 的像素信息 pixelData let canvas uni.createSelector…

Wireshark使用相关

1.wireshark如何查看RST包 tcp.flags.reset1 RST表示复位,用来异常的关闭连接,在TCP的设计中它是不可或缺的。发送RST包关闭连接时,不必等缓冲区的包都发出去(不像上面的FIN包),直接就丢弃缓存区的包发送R…

【功能实现】新年贺卡(蓝桥)

题目分析: 想要实现一个随机抽取功能 功能拆解:题目给了数组,我们采用生成随机数的方式,随机数作为数组的索引值访问数组的值。 并返回获取到的值,将获取到的值插入到页面中。 document.addEventListener(DOMConten…

循序渐进丨MogDB 对 Oracle DBLink兼容性增强

本特性自 MogDB 5.0.0版本开始引入,支持 Oracle DBLink语法,可以使用符号访问 Oracle 数据库中的表。 示 例 01 环境准备 MogDB 环境 已安装 MogDB 数据库。已安装oracle_fdw插件,具体安装方法参见oracle_fdw安装文档https://docs.mogdb.io/…

自定义你的商店 – 设计WooCommerce商店的新方法

WooCommerce 8.8即将推出,带来了一种无需代码即可创建精美商店的新方法。向“自定义你的商店”问好,这是一项全新功能,将取代“个性化你的商店”入门步骤。 自定义你的商店将利用最新的WordPress站点编辑工具以及酷炫的新Pattern Assembler …

誉天华为认证云计算课程如何

HCIA-Cloud Computing 5.0 课程介绍:掌握华为企业级虚拟化、桌面云部署,具备企业一线部署实施及运维能力 掌握虚拟化技术、网络基础、存储基础等内容,拥有项目实施综合能力 满足企业虚拟化方案转型需求,应对企业日益多样的业务诉求…

763. 划分字母区间(力扣LeetCode)

763. 划分字母区间 题目描述 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串…

Web开发基本流程

Web是全球广域网,能够通过浏览器访问的网站。我们要访问网站,首先要在浏览器输入对应的域名。 浏览器也是一个程序,京东的网站也是一个程序,在京东那边电脑运行着,我们只是通过浏览器远程访问。京东的程序由三个部分组…

【题目】【网络系统管理】2022 年全国职业院校技能大赛 网络系统管理赛项 模块 A:网络构建

2022 年全国职业院校技能大赛 网络系统管理赛项 模块 A:网络构建 目录 考试说明 … 3 任务描述 … 3 任务清单 … 3 (一)基础配置 … 3 (二)有线网络配置 … 4 (三)无线网络配置 … 5 &…

深入解析MD5哈希算法:原理、应用与安全性

码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 本文将深入探讨MD5哈希算法的工作原理、应用场景以及安全性问题。我们将了解MD5如何生成固定长度的哈希值,以及它在数…

PHiSeg:捕捉医学图像分割中的不确定性

PHiSeg:捕捉医学图像分割中的不确定性 摘要引言方法 PHiSeg Capturing Uncertainty in Medical Image Segmentation 摘要 解剖结构和病理的分割本质上是模糊的。例如,结构边界可能不清晰可见,或者不同的专家可能具有不同的注释风格。大多数当…

C++ 之多态虚函数原理及应用

文章目录 多态基本概念和原理虚函数的基本原理和概念虚析构和纯虚析构多重继承中的虚函数小结 多态基本概念和原理 多态的基本概念 **多态是C面向对象三大特性之一** 多态的定义 多态是一种面向对象编程概念,指同一个行为(方法)在不同的对象上…

Java上机实验报告(4)

实验 (4) 项目名称:子类与继承-求圆柱和圆锥 一、 实验报告内容一般包括以下几个内容: 实验项目名称 实验4 子类与继承-求圆柱和圆锥实验目的和要求 本实验的目的: (1)掌握(继承&a…

【前端学习——js篇】5.事件循环

详细:https://github.com/febobo/web-interview 5.事件循环 js是一种单线程语言,同一时间内只能做一件事情,为了避免单线程阻塞的方法就是事件循环。 在javascript当中,所有的任务都可以分为: 同步任务:按…

Windows10 Version22h2 补丁kb5034441更新失败

By wdhuag 20240328 参考: Windows10安装KB5034441更新报错0x80070643_2024-01 适用于 windows 10 version 22h2 安全更新,适合基于 x64 -CSDN博客 windows10(KB5034441)更新失败报错 0x80070643解决方法_kb5034441更新失败-CSDN博客 如何修复 Windo…