教程3_图像的轮廓

目录

目标

1. 特征矩

2、轮廓质心

3. 轮廓面积

4. 轮廓周长

5. 轮廓近似

6. 轮廓凸包

7. 边界矩形

7.1.直角矩形

7.2. 旋转矩形

8. 最小闭合圈

9. 拟合一个椭圆

10. 拟合直线


目标

        在本文中,我们将学习 - 如何找到轮廓的不同特征,例如面积,周长,质心,边界框等。 - 您将看到大量与轮廓有关的功能。

1. 特征矩

        特征矩可以帮助您计算一些特征,例如物体的质心,物体的面积等。请查看特征矩上的维基百科页面。函数 cv.moments() 提供了所有计算出的矩值的字典。见下文:

import numpy as np
import cv2 as cv
img = cv.imread('star.jpg',0)
ret,thresh = cv.threshold(img,127,255,0)
contours,hierarchy = cv.findContours(thresh, 1, 2)
cnt = contours[0]
M = cv.moments(cnt)
print( M )

        从这一刻起,您可以提取有用的数据,例如面积,质心等。

2、轮廓质心

        质心由关系给出,cx=M10/M00 和 cy=M01/M00。可以按照以下步骤进行,第一个示例为简单的检测单个轮廓,第二个示例能检测图片中的多个轮廓。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])print('轮廓的质心坐标为:(%d,%d) '%cx %cy)
import cv2  
import numpy as np  # 读取图像  
image = cv2.imread('7.jpg')  # 转换为灰度图像  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # 应用阈值来获取二值图像  
_, thresholded = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 查找轮廓  
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  # 遍历每个轮廓  
for contour in contours:  # 计算轮廓的矩  M = cv2.moments(contour)  # 检查矩是否存在(轮廓不为空)  if M["m00"] != 0:  # 计算质心  cX = int(M["m10"] / M["m00"])  cY = int(M["m01"] / M["m00"])  # 在图像上绘制质心  cv2.circle(image, (cX, cY), 5, (255, 0, 0), -1)  cv2.putText(image, "centroid", (cX - 25, cY - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)  # 显示结果图像  
cv2.imshow('Image with Centroids', image)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

3. 轮廓面积

        轮廓区域由函数 cv.contourArea() 或从矩 M['m00'] 中给出。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )area = cv.contourArea(cnt) 

4. 轮廓周长

        也称为弧长。可以使用 cv.arcLength() 函数找到它。第二个参数指定形状是闭合轮廓(True)还是曲线。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )perimeter = cv.arcLength(cnt,True)

5. 轮廓近似

        根据我们指定的精度,它可以将轮廓形状近似为顶点数量较少的其他形状。它是Douglas-Peucker算法的实现。检查维基百科页面上的算法和演示。

        为了理解这一点,假设您试图在图像中找到一个正方形,但是由于图像中的某些问题,您没有得到一个完美的正方形,而是一个“坏形状”(如下图所示)。现在,您可以使用此功能来近似形状。在这种情况下,第二个参数称为epsilon,它是从轮廓到近似轮廓的最大距离。它是一个精度参数。需要正确选择epsilon才能获得正确的输出。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )epsilon = 0.1*cv.arcLength(cnt,True) 
approx = cv.approxPolyDP(cnt,epsilon,True)

        在第二张图片中,绿线显示了ε=弧长的10%时的近似曲线。第三幅图显示了ε=弧长度的1%时的情况。第三个参数指定曲线是否闭合。 

6. 轮廓凸包

        凸包外观看起来与轮廓逼近相似,但不相似(在某些情况下两者可能提供相同的结果)。在这里,cv.convexHull()函数检查曲线是否存在凸凹缺陷并对其进行校正。一般而言,凸曲线是始终凸出或至少平坦的曲线。如果在内部凸出,则称为凸度缺陷。例如,检查下面的手的图像。红线显示手的凸包。双向箭头标记显示凸度缺陷,这是凸包与轮廓线之间的局部最大偏差。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )hull = cv.convexHull(cnt) 

        但是,如果要查找凸度缺陷,则需要传递returnPoints = False。为了理解它,我们将拍摄上面的矩形图像。首先,我发现它的轮廓为cnt。现在,我发现它的带有returnPoints = True的凸包,得到以下值:[[[234 202]],[[51 202]],[[51 79]],[[234 79]]],它们是四个角 矩形的点。现在,如果对returnPoints = False执行相同的操作,则会得到以下结果:[[129],[67],[0],[142]]。这些是轮廓中相应点的索引。例如,检查第一个值:cnt [129] = [[234,202]]与第一个结果相同(对于其他结果依此类推)。

7. 边界矩形

有两种类型的边界矩形。

7.1.直角矩形

        它是一个矩形,不考虑物体的旋转。所以边界矩形的面积不是最小的。它是由函数cv.boundingRect()找到的。

        令(x,y)为矩形的左上角坐标,而(w,h)为矩形的宽度和高度。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )x,y,w,h = cv.boundingRect(cnt)
cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
7.2. 旋转矩形

        这里,边界矩形是用最小面积绘制的,所以它也考虑了旋转。使用函数是 cv.minAreaRect()。它返回一个Box2D结构,其中包含以下细节 -(中心(x,y),(宽度,高度),旋转角度)。但要画出这个矩形,我们需要矩形的四个角。它由函数 cv.boxPoints() 获得:

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )rect = cv.minAreaRect(cnt)
box = cv.boxPoints(rect)
box = np.int0(box)
cv.drawContours(img,[box],0,(0,0,255),2)

        两个矩形都显示在一张单独的图像中。绿色矩形显示正常的边界矩形。红色矩形是旋转后的矩形。

8. 最小闭合圈

        接下来,使用函数 cv.minEnclosingCircle() 查找对象的圆周。它是一个以最小面积完全覆盖物体的圆。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )(x,y),radius = cv.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
cv.circle(img,center,radius,(0,255,0),2)

 

9. 拟合一个椭圆

        下一个是把一个椭圆拟合到一个物体上。它返回内接椭圆的旋转矩形。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )ellipse = cv.fitEllipse(cnt)
cv.ellipse(img,ellipse,(0,255,0),2)

 

10. 拟合直线

        同样,我们可以将一条直线拟合到一组点。下图包含一组白点。我们可以近似一条直线。

import numpy as np
import cv2 as cvimg = cv.imread('star.jpg',0)ret,thresh = cv.threshold(img,127,255,0)contours,hierarchy = cv.findContours(thresh, 1, 2)cnt = contours[0]M = cv.moments(cnt)
print( M )rows,cols = img.shape[:2]
[vx,vy,x,y] = cv.fitLine(cnt, cv.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) + y)
righty = int(((cols-x)*vy/vx)+y)
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)

12. 长宽比

        它是对象边界矩形的宽度与高度的比值。

x,y,w,h = cv.boundingRect(cnt)
aspect_ratio = float(w)/h

12. 范围

        范围是轮廓区域与边界矩形区域的比值。

area = cv.contourArea(cnt)
x,y,w,h = cv.boundingRect(cnt)
rect_area = w*h
extent = float(area)/rect_area

13. 坚实度

        坚实度是等高线面积与其凸包面积之比。

area = cv.contourArea(cnt)
hull = cv.convexHull(cnt)
hull_area = cv.contourArea(hull)
solidity = float(area)/hull_area

14. 等效直径

        等效直径是面积与轮廓面积相同的圆的直径。

area = cv.contourArea(cnt)
equi_diameter = np.sqrt(4*area/np.pi)

15. 取向

        取向是物体指向的角度。以下方法还给出了主轴和副轴的长度。

(x,y),(MA,ma),angle = cv.fitEllipse(cnt)

16. 掩码和像素点

        在某些情况下,我们可能需要构成该对象的所有点。可以按照以下步骤完成:

mask = np.zeros(imgray.shape,np.uint8)
cv.drawContours(mask,[cnt],0,255,-1)
pixelpoints = np.transpose(np.nonzero(mask))
#pixelpoints = cv.findNonZero(mask)

        这里提供了两个方法,一个使用Numpy函数,另一个使用OpenCV函数(最后的注释行)。结果也是一样的,只是略有不同。Numpy给出的坐标是(行、列)格式,而OpenCV给出的坐标是(x,y)格式。所以基本上答案是可以互换的。注意,row = x, column = y

17. 最大值,最小值和它们的位置

        我们可以使用掩码图像找到这些参数。

min_val, max_val, min_loc, max_loc = cv.minMaxLoc(imgray,mask = mask)

18. 平均颜色或平均强度

        在这里,我们可以找到对象的平均颜色。或者可以是灰度模式下物体的平均强度。我们再次使用相同的掩码进行此操作。

mean_val = cv.mean(im,mask = mask)

19. 极端点

        极点是指对象的最顶部,最底部,最右侧和最左侧的点。

leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])

        例如,如果我将其应用于印度地图,则会得到以下结果: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/773378.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣 217.存在重复元素

给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false 。 示例 1: 输入:nums [1,2,3,1] 输出:true 示例 2: 输入:num…

Ansible剧本playbooks详解

一、playbook简介 playbook是ansible用于配置,部署和管理托管主机剧本,通过playbook的详细描述,执行其中一系列tasks,playbook字面意思是剧本,现实中由演员按剧本表演,在ansible中由计算机进行安装&#x…

nginx负载均衡模式

轮询 (Round Robin) 用法:这是Nginx默认的负载均衡策略。每个请求会按顺序分配给upstream中的后端服务器,即按照配置的服务器列表顺序依次分配。 upstream backend {server backend1.example.com;server backend2.example.com;server backend3.example.c…

【Java】LinkedList vs. ArrayList:Java中的数据结构选择

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…

docker日志大小设置(doker logs)

参考文章docker logs日志上限(日志容量上限、日志大小上限)(默认大小、默认日志大小)_docker 日志限制-CSDN博客 如果想要更改 Docker daemon 的全局默认设置,可以修改 Docker daemon 的配置文件 /etc/docker/daemon…

zookeeper--Znode类型详解---面试宝典

一、Znode分类 1、persistent_node 持久化节点 是默认类型,该类型节点,并不会随着客户端断开就会自动删除;zookeeper服务重启该节点也不会被删除,只有手动删除的时候才会删除;可以创建子节点; # create …

uniapp开发小程序遇到的问题,持续更新中

一、uniapp引入全局scss 在App.vue中引入uni.scss <style lang"scss">/* #ifndef APP-NVUE */import "uni.scss";/* #endif */ </style>注意&#xff1a;nvue页面的样式在编译时&#xff0c;有很多样式写法被限制了&#xff0c;容易报错。所…

【C++ leetcode】双指针(专题完结)

15. 三数之和 题目 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的…

驱动器的工艺结构原理及选型参数总结

🏡《总目录》 目录 1,概述2,工作原理2.1,信号转换2.2,电流放大2.3,电压级转换2.4,控制输出3,结构特点3.1,高集成度3.2,多功能性3.3,高性能3.4,省电节能3.5,稳定可靠4,工艺流程<

面试经典150题【101-110】

文章目录 面试经典150题【101-110】9.回文数61.加一172.阶乘后的069.x的平方根50.Pow(x,n)149.直线上最多的点数52.N皇后II120.三角形最小路径和64.最小路径和63.不同路径II 面试经典150题【101-110】 6道偏数学的题和4道二维dp 9.回文数 一开始想转为字符串再判断。后来发现…

信号处理--基于混合CNN和transfomer自注意力的多通道脑电信号的情绪分类的简单应用

目录 关于 工具 数据集 数据集简述 方法实现 数据读取 ​编辑数据预处理 传统机器学习模型(逻辑回归&#xff0c;支持向量机&#xff0c;随机森林) 多层感知机模型 CNNtransfomer模型 代码获取 关于 本实验利用结合了卷积神经网络 (CNN) 和 Transformer 组件的混合…

五-容量管理之容量预案

容量预案(Capacity Plan)是容量管理的一个重要组成部分。 容量预警条件和措施&#xff1a; 类型预警条件措施应用服务器Load95分位值大于CPU核数的2倍 前一天CPU 95分位值大于90% 内存使用率95分位值大于90%增加应用服务器数据库数据库连接超过200扩容DB服务规格/ 优化SQL查询…

windows下powershell与linux下bash美化教程(使用starship)

starship美化教程 Win11 Powershell 安装 在命令行使用下面命令安装 # 安装starship winget install starship将以下内容添加到 Microsoft.PowerShell_profile.ps1&#xff0c;可以在 PowerShell 通过 $PROFILE 变量来查询文件的位置 Invoke-Expression (&starship i…

【HBZ分享】Kafka为什么性能非常高

Kafka性能高的原因 磁盘顺序读写&#xff1a;磁盘顺序读写的性能可以和内存相媲美&#xff0c;顺序读写不需要寻道时间&#xff0c;也不需要大幅旋转磁头找扇区&#xff0c;所以性能极高 零拷贝&#xff1a; 大幅降低了用户态与内核态之间的切换&#xff0c;从而减少了数据来回…

Chrome安装Vue插件vue-devtools

安装Vue.js开发者工具&#xff08;Vue DevTools&#xff09;到Google Chrome浏览器的步骤可能会随着Vue DevTools更新和Chrome政策变化而有所调整。 1.从GitHub获取源代码&#xff1a; 访问Vue DevTools的GitHub仓库&#xff1a;https://github.com/vuejs/vue-devtools 根据仓…

web学习笔记(四十五)Node.js

目录 1. Node.js 1.1 什么是Node.js 1.2 为什么要学node.js 1.3 node.js的使用场景 1.4 Node.js 环境的安装 1.5 如何查看自己安装的node.js的版本 1.6 常用终端命令 2. fs 文件系统模块 2.1引入fs核心模块 2.2 读取指定文件的内容 2.3 向文件写入指定内容 2.4 创…

sql oracle 获取当前日期的最后一天

语法 LAST_DAY 传入一个日期类型的变量&#xff0c;但会给你一个当月的最后一天的变量 LAST_DAY(TO_DATE(year || - || SUBSTR(month, -2) || -01, YYYY-MM-DD)) < ?应用实例 AssetValueSingleQT.spl 一个表中只存储的年和月&#xff0c;需要更具年月筛选小于指定日期&…

yarn按包的时候报错 ../../../package.json: No license field

运行 yarn config list 然后运行 yarn config set strict-ssl false 之后yarn就成功了

基于SpringBoot“网上选课系统”设计和实现(源码定制以及咨询!!)

博主介绍&#xff1a;✌全网粉丝10W,B站项目阿龙、csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、华为云获奖者&#xff0c;“程序员阿龙”✌ 主要内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python&#xff0c;MYSQL、Hodpoo…

网络工程师软考中级考试大纲

考试要求&#xff1a; &#xff08;1&#xff09;熟悉计算机系统的基础知识&#xff1b;&#xff08;2&#xff09;熟悉网络操作系统的基础知识&#xff1b;&#xff08;3&#xff09;理解计算机应用系统的设计和开发方法&#xff1b;&#xff08;4&#xff09;熟悉数据通信的基…