前端面试拼图-数据结构与算法(二)

摘要:最近,看了下慕课2周刷完n道面试题,记录下...

1. 求一个二叉搜索树的第k小值

        二叉树(Binary Tree)

        是一棵树

        每个节点最多两个子节点

        树节点的数据结构{value, left?, right?}

        二叉树的遍历

        前序遍历:root→left→right

        中序遍历:left→root→right

        后序遍历:left→right→root

        二叉搜索树BST(Binary Search Tree)

        left(包括其后代) value ≤ root value

        right (包括其后代) value ≥ root value

        可使用二分法进行快速查找

        解题思路:BST中序遍历,从小到大的排序

                          找到排序后的第k个值

/**
* 二叉搜索树
*/
interface ITreeNode {value: numberleft: ITreeNode | nullright: ITreeNode | null
}const arr: number[] = []/**
* 二叉树前序遍历
*/
function preOrderTraverse(node: ITreeNode | null) {if ( node == null) return//console.log(node.value)arr.push(node.value)preOrderTraverse(node.left)preOrderTraverse(node.right)
}/**
* 二叉树中序遍历
*/
function inOrderTraverse(node: ITreeNode | null) {if ( node == null) returninOrderTraverse(node.left)// console.log(node.value)arr.push(node.value)inOrderTraverse(node.right)
}/**
* 二叉树后序遍历
*/
function postOrderTraverse(node: ITreeNode | null) {if ( node == null) returnpostOrderTraverse(node.left)postOrderTraverse(node.right)// console.log(node.value)arr.push(node.value)
}/**
* **寻找BST中的第k小值**
*/
function getKthValue(node: ITreeNode, k: number): number | null {inOrderTraverse(node)console.log(arr)return arr[k-1] || null
}const bst: ITreeNode = {value: 5,left: {value: 3,left: {value: 2,left: null,right: null},right: {value: 4,left: null,right: null}},right: {value: 7,left: {value: 6,left: null,right: null},right: {value: 8,left: null,right: null}}
}//preOrderTraverse(tree)

平衡二叉树 | HZFE - 剑指前端 Offer题目描述icon-default.png?t=N7T8https://febook.hzfe.org/awesome-interview/book1/algorithm-balanced-binary-trees        扩展:为何二叉树如此重要,而不是三叉树、四叉树?

        性能、性能、还是性能!重要的事情说三遍

        数组:查找快O(1),增删慢O(n);链表:查找慢O(n),增删快O(1)

        二叉搜索树BST:查找快、增删快—"木桶效应"

        平衡二叉树

        BST如果不平衡,那就又成了链表

        所以要尽量平衡:平衡二叉搜索树BBST(其增删查,时间复杂度都是O(logn),即树的高度)

        红黑树:本质是一种自平衡二叉树

        分为红/黑两种颜色,通过颜色转换来维持输的平衡

        相对于普通平衡二叉树,它维持平衡的效率更高

        B树

        物理上是多叉树,但逻辑上是二叉树

        一般用于高效I/O, 关系型数据库常用B树 来组织数据

        扩展2:堆有什么特点?和二叉树又什么关系?

        堆栈模型

        JS执行时,值类型变量,存储在栈中;引用类型变量,存储在堆中

        堆是完全二叉树

        最大堆:父节点 ≥子节点

        最小堆:父节点≤子节点

        满二叉树(又叫完美二叉树):所有层的节点都被填满;

        完全二叉树:最底层节点靠左填充,其它层节点全被填满

7.1   二叉树 - Hello 算法动画图解、一键运行的数据结构与算法教程icon-default.png?t=N7T8https://www.hello-algo.com/chapter_tree/binary_tree/#1_1        逻辑结构 VS 物理结构

        堆:逻辑结构是一颗二叉树,但它的物理结构式一个数组

        堆的使用场景

        特别适合"堆栈模型"

        堆的数据,都是在栈中引用的,不需要从root遍历

        堆恰巧是数组形式,根据栈的地址,可用O(1)找到目标

2. JS计算斐波那契数列的第n个值

/**
* 斐波那契额数列(递归)
*/
function fibonacci(n:number): number{if(n <=1 ) return nreturn fibonacci(n-1) + fibonacci(n-2)
}

        递归有大量重复计算,其时间复杂度是O(2^n)

        优化:不用递归用循环,记录中间结果,时间复杂度O(n)

/**
* 斐波那契额数列(循环)
*/
function fibonacci(n:number): number{if(n <=1 ) return nlet n1 = 1  //记录n-1的结果let n2 = 0  //记录n-2的结果let res = 0for(let i = 2; i <= n; i++) {res = n1 + n2;// 记录中间结果n2 = n1n1 = res} return res
}

        动态规划:

        把一个大问题,拆解为一个小问题,逐级向下拆解

        用递归的思想去分析问题,再改用循环来实现

        算法三大思维:贪心、二分、动态规划

        扩展:青蛙跳台阶问题,一只青蛙,一次可跳1级,也可跳两级,请问青蛙跳到n级台阶,总共有多少种方式?

        第一次跳1级则有f(n-1)种方式,跳2级则有f(n-2)种方式,则结果和斐波那契额数列一样。

3. 将数组的0 移动到末尾

        如输入[1,0,3,0,11,0],输出[1,3,11,0,0,0],只移动0,其他顺序不变;必须在原数组进行操作

        传统思路

        遍历数组,遇到0则push到数组末尾

        用splice截取当前元素

        时间复杂度O(n^2)—算法不可用

        数组是连续存储,要慎用splice unshift 等API

/**
* 移动0到数组末尾(嵌套循环)
*/
function moveZero1(arr:number[]):void {const length = arr.lengthif(length === 0) returnlet zeroLength = 0// **O(n^2)**for (let i = 0; i < length - zeroLength; i++) {if (arr[i] === 0) {arr.push(0)arr.splice(i,1)  // 本身就有O(n)i-- //数组接去了一个元素,i要递减,否则连续0就会有错误zeroLength++ // 累加0的长度}}
}

        双指针思路(解决嵌套循环的有效)

        定义j指向第一个0,i指向j后面的第一个非0

        交换i和j的值,继续向后移动

        只遍历一次,所以时间复杂度是O(n)

/**
* 移动0到数组末尾(双指针)
*/
function moveZero2(arr:number[]):void {const length = arr.lengthif(length === 0) returnlet ilet j = -1 // 指向第一个0for(i=0; i < length; i++) {if(arr[i] === 0) {if (j < 0) {   // 第一个0j = i}}if(arr[i] !== 0 && j >=0 ) {const n = arr[i]arr[i] = arr[j]arr[j] = nj++}}
}

4. 获取字符串中连续最多的字符,以及次数

        如输入'abbcccddeeee1234',计算得到连输最多的字符是'e',为4次

        传统思路

        嵌套循环,找出每个字符的连续次数,并记录

        看似时间复杂度是O(n^2)

        但实际时间复杂度是多少?—O(n),因为有'跳步'

/**
* 求连续最多的字符和次数(嵌套循环)
*/
interface IRes {char: stringlength: number
}
function findContinuousChars1(str:string):IRes {const res:IRes = {char: '',length: 0}const length = str.lengthif (length === 0) return reslet tempLength = 0 //临时记录当前连续字符串的长度// 时间复杂度O(n)for(let i = 0; i < length; i++) {tempLength = 0 // 重置for(let j = i; j < length; j++) {if (str[i] === str[j]) {tempLength++}if(str[i] !== str[j] || j === length-1) {// 不相等,或者已经到最后一个元素。要去判断最大值if (tempLength > res.length) {res.char = str[i]res.length = tempLength}if (i < length - 1) {i = j -1   // 跳步}break}}}  return res
}

        双指针思路(适用于解决嵌套循环类问题)

        定义指针i和j;j不动,i继续移动

        如果i和j的值一直相等,则i继续移动

        直到i和j的值不相等,记录处理,让j追上i。继续第一步

/**
* 求连续最多的字符和次数(双指针)
*/
interface IRes {char: stringlength: number
}
function findContinuousChars2(str:string):IRes {const res:IRes = {char: '',length: 0}const length = str.lengthif (length === 0) return reslet tempLength = 0 //临时记录当前连续字符串的长度// 时间复杂度O(n)let i = 0let j = 0for(; i < length; i++) {if(str[i] === str[j]) {tempLength++}if(str[i] !== str[j] || i === length-1) {// 不相等,或者i到了字符串的末尾if(tempLength > res.length) {res.char = str[j]res.length = tempLength}tempLength = 0  //重置长度if(i < length - 1) {j = i //让j"追上" ii--}}}return res
}

ps:算法题尽量使用低级的代码,慎用语法糖或者高级API

5. 用JS实现快速排序,并说明时间复杂度

6. 获取1-10000之前所有的对称数

7. 如何实现高效的英文单词前缀匹配

未完待续……

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/772368.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C/C++ 语言中的 ​if...else if...else 语句

C/C 语言中的 ​if...else if...else 语句 1. if statement2. if...else statement3. if...else if...else statementReferences 1. if statement The syntax of the if statement is: if (condition) {// body of if statement }The code inside { } is the body of the if …

聚合支付评级较低的机构能否提升评级

聚合支付机构完成备案是合规展业的第一步&#xff0c;同时&#xff0c;一年一度评级结果对其业务开展和收单机构合作发展具有重要的作用&#xff0c;如若评级较低&#xff0c;将影响到其参与商业银行的外包业务投标&#xff0c;支付机构合作协议签署及合作事宜。 近期&#xf…

Chrome浏览器修改网页内容

方法一&#xff1a;使用开发者工具 在Chrome浏览器中打开要修改的网页。按下F12键打开开发者工具。在开发者工具窗口中&#xff0c;找到“Elements”标签页。在“Elements”标签页中&#xff0c;找到要修改的网页元素。双击要修改的网页元素&#xff0c;即可进行编辑。 方法二…

AIGC 训练场景下的存储特征研究

云布道师 引言&#xff1a;在传统块存储大行其道的时代&#xff0c;需要针对很多行业的工作负载&#xff08;Workload&#xff09;进行调研&#xff0c;包含块大小、随机读、读写比例等等。知道行业的 Workload 对于预估业务的 I/OPS、时延、吞吐等性能有很好的指导意义&#…

Cadence——生成Gerber制板文件

软件版本&#xff1a;Cadence SPB OrCAD Allegro 16.6 打开Allegro PCB Designer 选择如下选项&#x1f447; 点击 File–>Open&#xff0c;找到对应的.brd文件 电气错误的检查&#xff1a;点击 Display–>Status&#xff0c;全为绿色则没有错误 按照不同的项目来进…

自幂数之水仙花数(从0开始)

文章目录 概要整体架构流程代码实现小结 概要 水仙花数&#xff08;Narcissistic number&#xff09;也被称为超完全数字不变数&#xff08;pluperfect digital invariant, PPDI&#xff09;、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数&#xff08;Armstrong number&#xff…

基于stm32与TJC3224T124_011串口屏的PID调参器(附完整工程)

电赛在即&#xff0c;每次比赛调PID都是一件比较繁琐的事。每次都要在程序中改完再烧录到板子上&#xff0c;特别耗时。正好最近发现实验室的一块串口屏比较好玩。 于是就做了这个调PID的东西。它可以通过串口直接修改PID的值&#xff0c;从而达到快速调PID的目的。下面我将完整…

C++学习笔记(lambda函数)

C learning note 1、lambda函数的语法2、lambda函数的几种用法 1、lambda函数的语法 lambda函数的一般语法如下&#xff1a; [ capture_clause ] ( parameters ) -> return_type {function_body }capture_clause&#xff1a;需要捕获的变量&#xff0c;但要求该变量必须在…

【办公类-16-07-07】“2023下学期 中班户外游戏2(有场地和无场地版,每天不同场地)”(python 排班表系列)

作品展示 背景需求&#xff1a; 2024年2月教务组发放的是“每周五天内容相同&#xff0c;两周10天内容相同”的户外游戏安排 【办公类-16-07-05】合并版“2023下学期 大班户外游戏&#xff08;有场地和无场地版&#xff0c;两周一次&#xff09;”&#xff08;python 排班表系…

探索未来智能的奥秘

文章目录 前言 前言 随着科技的不断进步&#xff0c;人工智能(AI)已逐渐渗透到我们生活的方方面面。而在AI的众多分支中&#xff0c;大模型技术无疑是一个备受瞩目的领域。本文将带领大家走进AI大模型的世界&#xff0c;一同探索其奥秘。 AI大模型&#xff0c;顾名思义&#…

YOLOv7 | 注意力机制 | 添加ECA注意力机制

目录 原理简介 代码实现 yaml文件实现&#xff08;tips&#xff1a;可以添加不同的位置&#xff09; 检查是否添加执行成功 完整代码分享 论文创新必备&#xff08;可帮忙做实验&#xff09; 启动命令 ECA是通道注意力机制的一种实现形式&#xff0c;是基于SE的扩展。…

Data Interpreter: An LLM Agent For Data Science 论文解读

论文地址&#xff1a;https://arxiv.org/abs/2402.18679 Github&#xff1a;MetaGPT: The Multi-Agent Framework 数据解释器&#xff08;Data Interpreter&#xff09;是一个基于大型语言模型&#xff08;LLM&#xff09;的代理&#xff0c;专门为解决数据科学问题而设计。它…

互联网摸鱼日报(2024-03-21)

互联网摸鱼日报(2024-03-21) 36氪新闻 金山云Q4营收17.22亿元&#xff0c;技术创新驱动收入规模和盈利能力双增长 iOS 18是苹果AI的答卷&#xff1f;你或许并不懂手机AI 2024年&#xff0c;广告主市场预算真的继续下滑&#xff1f; 降价潮反倒劝退消费者&#xff0c;想买车…

数据丢失大救星:格式化后如何高效恢复文件

一、格式化危机&#xff1a;如何逆转数据流失 在数字时代&#xff0c;数据丢失无疑是一场灾难。当我们的电脑硬盘、手机或闪存盘不慎被格式化后&#xff0c;重要文件仿佛在一瞬间消失得无影无踪。面对这一突发状况&#xff0c;很多人会陷入迷茫和焦虑之中。那么&#xff0c;格…

Django(三)-搭建第一个应用(2)

一、编写更多视图 问题详情页——展示某个投票的问题和不带结果的选项列表。问题结果页——展示某个投票的结果。投票处理器——用于响应用户为某个问题的特定选项投票的操作。 # 1.问题详情页&#xff1a;展示某个投票的问题和不带结果的选项列表 def detail(request,questi…

放弃 Rust 选择 Zig,Xata 团队推出 pgzx —— 计划使用 Zig 开发基于 PG 的分布式数据库

Summary Xata 公司在基于 PostgresSQL 开发自己的分布式数据库&#xff0c;出于 Zig 和 C 语言以及 PostgreSQL 的 API 有更好的互操作性的考虑&#xff0c;他们选择了 Zig 而非当红炸子鸡语言 Rust。他们的博客文章中对 pgzx 进行了介绍。让我们来看下他们对 Zig 和 Rust 语言…

clickhouse学习笔记02(小滴课堂)

ClickHouse核心基础-常见数据类型讲解 插入数据&#xff1a; decimal类型的数据&#xff0c;整数部分超了会报错&#xff0c;小数部分超了会截取。 查看表结构&#xff1a; 查询&#xff1a; 插入&#xff1a; 更新操作&#xff1a; 这个和mysql的语句不太一样。 删除语句和my…

【算法】冒泡、选择和插入排序

目录 1. 简介2. 冒泡排序2.1 步骤2.2 C语言编码3. 选择排序步骤C语言编码4. 插入排序步骤C语言编码1. 简介 在经典排序算法中 排序算法平均时间复杂度最好情况最坏情况空间复杂度排序方式稳定性冒泡排序O ( n 2 ) O{\left(n^{2} \right)} O(n2)O ( n ) O{\left(n\right)} O(n)…

Kafka总结问题

Kafka Kafka Kafka Kafka的核心概念/ 结构 topoic Topic 被称为主题&#xff0c;在 kafka 中&#xff0c;使用一个类别属性来划分消息的所属类&#xff0c;划分消息的这个类称为 topic。topic 相当于消息的分配标签&#xff0c;是一个逻辑概念。主题好比是数据库的表&#xff0…

【SpringBoot】实现一个简单的图片上传

前端上传表单 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <form enctype"multipart/form-data" method"post" action&q…