AI项目六:WEB端部署YOLOv5

若该文为原创文章,转载请注明原文出处。

一、介绍

最近接触网页大屏,所以就想把YOLOV5部署到WEB端,通过了解,知道了两个方法:

1、基于Flask部署YOLOv5目标检测模型。

2、基于Streamlit部署YOLOv5目标检测。

代码在github上,个人感觉两个比较好的,所以基于两份代码测试。

https://github.com/ngzhili/Yolov5-Real-Time-Object-Detection

GitHub - harshit-tech03/Fire_Detection: A fire detection web app using yolov5.

一、虚拟环境创建

1、创建虚拟环境

conda create -n yolov5_env python=3.8  

2、激活环境

conda activate yolov5_env

3、下载yolov5

https://github.com/ultralytics/yolov5

4、安装yolov5

pip install -r requirements.txt

注意以下测试都是基于此环境测试

二、基于Flask部署YOLOv5目标检测模型。

1、安装环境

requirements.txt

flask
requests
blackmatplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0tensorboard>=2.4.1seaborn>=0.11.0
pandasthop  # FLOPs computation

代码感觉相对简单,而且也挺详细的,所以直接上代码。

2、前端代码

index.html


<!DOCTYPE html>
<html><head><meta charset="utf-8"><meta content="width=device-width, initial-scale=1.0" name="viewport"><title>YOLOV5 Real Time Inference</title><style>.corner {border-radius: 25px;border: 5px solid #212aad;padding: 0px;width:60%;height:auto;text-align: center;}.video-container {justify-content: center;text-align: center;height:100%;/*border: 1px solid black;*/}</style></head><body ><div class="container"><div class="row" style="text-align: center; width:100%;"><img src="../static/pytorch.png" style="width:40px; position:relative; left: -10px; display:inline-block;"><h1 style="text-align: center; display:inline-block;">Template for YOLOV5 Object Detection Model Real-Time Inference Using Web Cam</h1></img><h2 style="text-align: center;">Built by Zhili</h2></div></div><div class="video-container"><img src="{{ url_for('video') }}" class="corner"></img><!--<img src="../static/pytorch.png" class="corner"></img>--><!--<img src="{{ url_for('video') }}" width="50%"/>--></div></body>
</html>

3、后端代码

app.py

"""
Simple app to upload an image via a web form 
and view the inference results on the image in the browser.
"""
import argparse
import io
import os
from PIL import Image
import cv2
import numpy as npimport torch
from flask import Flask, render_template, request, redirect, Responseapp = Flask(__name__)#'''
# Load Pre-trained Model
#model = torch.hub.load(
#        "ultralytics/yolov5", "yolov5s", pretrained=True, force_reload=True
#        )#.autoshape()  # force_reload = recache latest code
#'''
# Load Custom Model
#model = torch.hub.load("ultralytics/yolov5", "custom", path = "./best_damage.pt", force_reload=True)
model = torch.hub.load('./yolov5', 'custom', './yolov5s.pt',source='local')
# Set Model Settings
model.eval()
model.conf = 0.6  # confidence threshold (0-1)
model.iou = 0.45  # NMS IoU threshold (0-1) from io import BytesIOdef gen():cap=cv2.VideoCapture(0)# Read until video is completedwhile(cap.isOpened()):# Capture frame-by-fram ## read the camera framesuccess, frame = cap.read()if success == True:ret,buffer=cv2.imencode('.jpg',frame)frame=buffer.tobytes()#print(type(frame))img = Image.open(io.BytesIO(frame))results = model(img, size=640)#print(results)#print(results.pandas().xyxy[0])#results.render()  # updates results.imgs with boxes and labelsresults.print()  # print results to screen#results.show() #print(results.imgs)#print(type(img))#print(results)#plt.imshow(np.squeeze(results.render()))#print(type(img))#print(img.mode)#convert remove single-dimensional entries from the shape of an arrayimg = np.squeeze(results.render()) #RGB# read image as BGRimg_BGR = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) #BGR#print(type(img))#print(img.shape)#frame = img#ret,buffer=cv2.imencode('.jpg',img)#frame=buffer.tobytes()#print(type(frame))#for img in results.imgs:#img = Image.fromarray(img)#ret,img=cv2.imencode('.jpg',img)#img=img.tobytes()#encode output image to bytes#img = cv2.imencode('.jpg', img)[1].tobytes()#print(type(img))else:break#print(cv2.imencode('.jpg', img)[1])#print(b)#frame = img_byte_arr# Encode BGR image to bytes so that cv2 will convert to RGBframe = cv2.imencode('.jpg', img_BGR)[1].tobytes()#print(frame)yield(b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')@app.route('/')
def index():return render_template('index.html')@app.route('/video')
def video():"""Video streaming route. Put this in the src attribute of an img tag."""return Response(gen(),mimetype='multipart/x-mixed-replace; boundary=frame')
'''                        
@app.route('/video')
def video():return Response(generate_frames(),mimetype='multipart/x-mixed-replace; boundary=frame')
'''
'''
@app.route("/", methods=["GET", "POST"])
def predict():if request.method == "POST":if "file" not in request.files:return redirect(request.url)file = request.files["file"]if not file:returnimg_bytes = file.read()img = Image.open(io.BytesIO(img_bytes))results = model(img, size=640)# for debugging# data = results.pandas().xyxy[0].to_json(orient="records")# return dataresults.render()  # updates results.imgs with boxes and labelsfor img in results.imgs:img_base64 = Image.fromarray(img)img_base64.save("static/image0.jpg", format="JPEG")return redirect("static/image0.jpg")return render_template("index.html")
'''if __name__ == "__main__":parser = argparse.ArgumentParser(description="Flask app exposing yolov5 models")parser.add_argument("--port", default=5000, type=int, help="port number")args = parser.parse_args()'''model = torch.hub.load("ultralytics/yolov5", "yolov5s", pretrained=True, force_reload=True).autoshape()  # force_reload = recache latest codemodel.eval()'''app.run(host="0.0.0.0", port=args.port)  # debug=True causes Restarting with stat# Docker Shortcuts
# docker build --tag yolov5 .
# docker run --env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" --device="/dev/video0:/dev/video0" yolov5

4、运行结果

执行python app.py

三、基于Streamlit部署YOLOv5目标检测。

1、什么是Streamlit

Streamlit 是一个用于数据科学和机器学习的开源 Python 框架。它提供了一种简单的方式来构建交互式应用程序,使数据科学家和机器学习工程师可以更轻松地将他们的模型展示给其他人。

以下是 Streamlit 常用的一些方法:

  • st.write():打印文本、数据框、图表等。
  • st.title():创建标题。
  • st.header():创建大标题。
  • st.subheader():创建小标题。
  • st.text():打印文本。
  • st.markdown():打印 Markdown 文本。
  • st.latex():打印 LaTeX 公式。
  • st.dataframe():显示数据框。
  • st.table():显示表格。
  • st.line_chart():创建线形图。
  • st.area_chart():创建面积图。
  • st.bar_chart():创建条形图。
  • st.map():创建地图。
  • st.pyplot():显示 Matplotlib 图表。
  • st.altair_chart():显示 Altair 图表。
  • st.vega_lite_chart():显示 Vega-Lite 图表。
  • st.bokeh_chart():显示 Bokeh 图表。
  • st.plotly_chart():显示 Plotly 图表。
  • st.image():显示图像。
  • st.audio():显示音频。
  • st.video():显示视频。
  • st.file_uploader():上传文件。
  • st.download_button():下载文件。

以上是 Streamlit 的一些常用方法,可以根据需要选择使用。

只能説Streamlit比Flask更简单,更容易看懂。

在上面环境的基础上在安装一次环境

2、安装环境

requirements.txt

yolov5
opencv_python_headless
streamlit
numpy
Pillow
torch
torchvision
PyYAML
tqdm
matplotlib
requests
scipy
tensorboard
pandas
seaborn
streamlit-webrtc
IPython

3、代码

代码不分前后端

Fire_Detection.py

import streamlit as st
import cv2
import numpy as np
import av
import torch
import tempfile
from PIL import Image@st.cache
def load_model():model = torch.hub.load('ultralytics/yolov5','custom',path="weights/last.pt",force_reload=True)return modeldemo_img = "fire.9.png"
demo_video = "Fire_Video.mp4"st.title('Fire Detection')
st.sidebar.title('App Mode')app_mode = st.sidebar.selectbox('Choose the App Mode',['About App','Run on Image','Run on Video','Run on WebCam'])if app_mode == 'About App':st.subheader("About")st.markdown("<h5>This is the Fire Detection App created with custom trained models using YoloV5</h5>",unsafe_allow_html=True)st.markdown("- <h5>Select the App Mode in the SideBar</h5>",unsafe_allow_html=True)st.image("Images/first_1.png")st.markdown("- <h5>Upload the Image and Detect the Fires in Images</h5>",unsafe_allow_html=True)st.image("Images/second_2.png")st.markdown("- <h5>Upload the Video and Detect the fires in Videos</h5>",unsafe_allow_html=True)st.image("Images/third_3.png")st.markdown("- <h5>Live Detection</h5>",unsafe_allow_html=True)st.image("Images/fourth_4.png")st.markdown("- <h5>Click Start to start the camera</h5>",unsafe_allow_html=True)st.markdown("- <h5>Click Stop to stop the camera</h5>",unsafe_allow_html=True)st.markdown("""## Features
- Detect on Image
- Detect on Videos
- Live Detection
## Tech Stack
- Python
- PyTorch
- Python CV
- Streamlit
- YoloV5
## 🔗 Links
[![twitter](https://img.shields.io/badge/Github-1DA1F2?style=for-the-badge&logo=github&logoColor=white)](https://github.com/AntroSafin)
""")if app_mode == 'Run on Image':st.subheader("Detected Fire:")text = st.markdown("")st.sidebar.markdown("---")# Input for Imageimg_file = st.sidebar.file_uploader("Upload an Image",type=["jpg","jpeg","png"])if img_file:image = np.array(Image.open(img_file))else:image = np.array(Image.open(demo_img))st.sidebar.markdown("---")st.sidebar.markdown("**Original Image**")st.sidebar.image(image)# predict the imagemodel = load_model()results = model(image)length = len(results.xyxy[0])output = np.squeeze(results.render())text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)st.subheader("Output Image")st.image(output,use_column_width=True)if app_mode == 'Run on Video':st.subheader("Detected Fire:")text = st.markdown("")st.sidebar.markdown("---")st.subheader("Output")stframe = st.empty()#Input for Videovideo_file = st.sidebar.file_uploader("Upload a Video",type=['mp4','mov','avi','asf','m4v'])st.sidebar.markdown("---")tffile = tempfile.NamedTemporaryFile(delete=False)if not video_file:vid = cv2.VideoCapture(demo_video)tffile.name = demo_videoelse:tffile.write(video_file.read())vid = cv2.VideoCapture(tffile.name)st.sidebar.markdown("**Input Video**")st.sidebar.video(tffile.name)# predict the videowhile vid.isOpened():ret, frame = vid.read()if not ret:breakframe = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)model = load_model()results = model(frame)length = len(results.xyxy[0])output = np.squeeze(results.render())text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)stframe.image(output)if app_mode == 'Run on WebCam':st.subheader("Detected Fire:")text = st.markdown("")st.sidebar.markdown("---")st.subheader("Output")stframe = st.empty()run = st.sidebar.button("Start")stop = st.sidebar.button("Stop")st.sidebar.markdown("---")cam = cv2.VideoCapture(0)if(run):while(True):if(stop):breakret,frame = cam.read()frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)model = load_model()results = model(frame)length = len(results.xyxy[0])output = np.squeeze(results.render())text.write(f"<h1 style='text-align: center; color:red;'>{length}</h1>",unsafe_allow_html = True)stframe.image(output)

4、运行结果

运行指令

 streamlit run Fire_Detection.py

会自动打开网页

demo提供了图片测试,视频测试,和摄像头几个方式的测试方法。由于使用的模型是训练好的模型,所以yolo版本不能修改,只能联网下载。

如果想用自己的yolov5

那修改加载模型,改成本地加载,模型也需要修改。

四、总结

通过两个方式,个人对部署web有了个相对的简单的认识。

在此感谢github,和网友提供的代码。

如有侵权,或需要完整代码,请及时联系博主。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/77139.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mt7981支持leds驱动 - 修改5g led为普通led

一. 前言 由于工作中需要驱动mt7981的gpio&#xff0c;所以研究了下怎么使用mt7981的leds驱动子系统&#xff0c;记录如下文。 二. 将5g wifi灯复用为普通GPIO 1. 查看drivers/pinctrl/mediatek/pinctrl-mt7981.c static const struct group_desc mt7981_groups[] { ....../…

android 10 wifi操作

android 10及以上wifi发生了变化&#xff0c;android 10及以下代码需要适配。 android 10及以上&#xff1a; 1.权限&#xff1a; <uses-permission android:name"android.permission.ACCESS_FINE_LOCATION"/> <uses-permission android:name"androi…

GPT 内部 — I : 了解文本生成

年轻的陀思妥耶夫斯基被介绍给生成AI&#xff0c;通过Midjourney创建 一、说明 我经常与不同领域的同事互动&#xff0c;我喜欢向几乎没有数据科学背景的人传达机器学习概念的挑战。在这里&#xff0c;我试图用简单的术语解释 GPT 是如何连接的&#xff0c;只是这次是书面形式。…

Windows安装Neo4j

图数据库概述 图数据库是基于图论实现的一种NoSQL数据库&#xff0c;其数据存储结构和数据查询方式都是以图论&#xff08;它以图为研究对象图论中的图是由若干给定的点及连接两点的线所构成的图形&#xff09;为基础的&#xff0c; 图数据库主要用于存储更多的连接数据。 Neo…

Java集合(Collection、Iterator、Map、Collections)概述——Java第十三讲

前言 本讲我们将继续来讲解Java的其他重要知识点——Java集合。Java集合框架是Java编程语言中一个重要的部分,它提供了一套预定义的类和接口,供程序员使用数据结构来存储和操作一组对象。Java集合框架主要包括两种类型:一种是集合(Collection),存储一个元素列表,…

C++【C++学习笔记_Wang】

时间进度C是什么&#xff1f;多态什么是多态&#xff1f;生活中的多态C中的多态 赋值兼容赋值兼容规则实现安全转换 时间进度 Day101 ok Day804 ok Day805 ok C是什么&#xff1f; C大部分包含C语言。 C完全兼容C语言。 C在C语言的基础上添加&#xff1a;封装、继承、多态…

Could not find artifact com.mysql:mysql-connector-j:pom:unknown

在 <dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><scope>runtime</scope> </dependency> 添加版本号 这里用的是8.0.33版本&#xff0c;输入5.0的版本依然会报错 我自身用的是5.0…

kubernetes(K8S)笔记

文章目录 大佬博客简介K8SDocker VS DockerDockerK8S简介K8S配合docker相比较单纯使用docker 大佬博客 Kubernetes&#xff08;通常缩写为K8s&#xff09;是一个用于自动化容器化应用程序部署、管理和扩展的开源容器编排平台。它的构造非常复杂&#xff0c;由多个核心组件和附加…

领域驱动设计:事件风暴构建领域模型

文章目录 事件风暴需要准备些什么&#xff1f;如何用事件风暴构建领域模型&#xff1f; 事件风暴是一项团队活动&#xff0c;领域专家与项目团队通过头脑风暴的形式&#xff0c;罗列出领域中所有的领域事件&#xff0c;整合之后形成最终的领域事件集合&#xff0c;然后对每一个…

【PowerQuery】Excel 一分钟以内刷新PowerQuery数据

当需要进行刷新的周期如果小于一分钟,采用数据自动刷新就无法实现自动刷新的目标。那就没有办法了吗?当然不是,这里就是使用VBA来实现自动刷新。这里实现VBA刷新的第一步就是将当前的Excel 保存为带有宏的Excel 文件,如果不带宏则无法运行带有宏代码的Excel文件,保存过程如…

数据结构与算法(一)数组的相关概念和底层java实现

一、前言 从今天开始&#xff0c;笔者也开始从0学习数据结构和算法&#xff0c;但是因为这次学习比较捉急&#xff0c;所以记录的内容并不会过于详细&#xff0c;会从基础和底层代码实现以及力扣相关题目去写相关的文章&#xff0c;对于详细的概念并不会过多讲解 二、数组基础…

中国大学MOOC临床医学概论(上)答案

1、关于糖尿病&#xff0c;下列哪个说法是错误的&#xff1f; A、糖尿病患者大部分无自觉症状 B、2型糖尿病具有广泛的遗传异质性 C、空腹血糖≥5.6mmol/L时应进行OGTT实验 D、对于2型糖尿病&#xff0c;不用胰岛素 答案&#xff1a;对于2型糖尿病&#xff0c;不用胰岛素 2、2型…

分析udev自动创建设备结点的过程

当系统内核发现系统中添加了某个新的设备时&#xff0c;在内核空间中会对该驱动进行注册&#xff0c;并获取该驱动设备的信息&#xff0c;然后创建一个设备类&#xff08;向上提交目录信息&#xff09;&#xff0c;并申请struct class对象并且初始化&#xff0c;然后创建一个设…

SpringCloud:Feign实现微服务之间相互请求

文章目录 &#x1f389;欢迎来到Java学习路线专栏~SpringCloud&#xff1a;Feign实现微服务之间相互请求 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&#x1f388;该系列文章专栏&#xff1a;Java学习路线&#x1f4dc;其他专栏&#xf…

2023大数据面试总结

文章目录 Flink&#xff08;SQL相关后面专题补充&#xff09;1. 把状态后端从FileSystem改为RocksDB后&#xff0c;Flink任务状态存储会发生哪些变化&#xff1f;2. Flink SQL API State TTL 的过期机制是 onCreateAndUpdate 还是 onReadAndWrite&#xff1f;3. watermark 到底…

SQL_牛客网_SQL264_求每个登陆日期的次日留存率

牛客每个人最近的登录日期(五) 牛客每天有很多人登录&#xff0c;请你统计一下牛客每个日期新用户的次日留存率。 有一个登录(login)记录表&#xff0c;简况如下: id user_id client_id date 1 2 1 2020-10-12 2 3 2 2020-10-12 3 1 2 2020-10-…

【服务器】Ubuntu 安装LVM | LVM使用

Ubuntu 安装LVM 参考&#xff1a;https://blog.vgot.net/archives/installl-linux-with-lvm-all-disk-space.html 扩展一个卷组 参见&#xff1a;https://blog.csdn.net/qq_39441603/article/details/128100497

使用IntelliJ IDEA本地启动调试Flink流计算工程的2个异常解决

记录&#xff1a;471 场景&#xff1a;使用IntelliJ IDEA本地启动调试Flink流计算时&#xff0c;报错一&#xff1a;加载DataStream报错java.lang.ClassNotFoundException。报错二&#xff1a;No ExecutorFactory found to execute the application。 版本&#xff1a;JDK 1.…

Java中的分布式计算框架有哪些?

Java中有许多流行的分布式计算框架。以下是其中一些&#xff1a; 这只是Java中一些流行的分布式计算框架的简要介绍。根据具体需求和场景&#xff0c;还有其他框架可供选择。 Apache Hadoop&#xff1a;一个用于分布式存储和并行处理大数据集的开源框架。它包括Hadoop分布式文件…

【Java基础篇 | 类和对象】--- 聊聊什么是内部类

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 本专栏旨在分享学习Java的一点学习心得&#xff0c;欢迎大家在评论区讨论&#x1f48c; 前言 当一个事物的内部&…