2016年认证杯SPSSPRO杯数学建模
D题 NBA是否有必要设立四分线
原题再现:
NBA 联盟从 1946 年成立到今天,一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的,比如 1973 年在技术统计中增加了抢断和盖帽数据;有应运而生、力挽狂澜的,比如 1954 年引入 24 秒进攻时限;有因人废事、“打击迫害”的,比如为了限制麦肯,将三秒区宽度从 6 英尺扩大到 12 英尺,又为了限制张伯伦,进一步扩大到 16 英尺;有步步为营、小心翼翼的,比如 2004年在 NBDL 试行所有投篮只算两分,直至第四节最后 5 分钟和加时赛才启用三分球规则;也有弄巧成拙、朝令夕改的,比如 1953 年曾规定每队每名球员单节只能犯规两次,第三次犯规就被罚出场,实施不久之后就不了了之……本质上,NBA 是一个以盈利为目的的商业联赛,为了最大限度地提升比赛观赏性,保证球迷们心甘情愿地掏钱买票,修改现有规则或设立新的规则都是可能的。
79-80 赛季,NBA 开始实验性的引入三分球制,当时的原则是“仅限于常规赛使用”。而在 80-81 赛季,NBA 正式全面引入三分线。目前,NBA 三分线的最远处距离篮筐是 7.25 米。值得注意的是 NBA 曾在 94-95 赛季将三分线距离缩短为 6.70 米,距离变短后人人都能投三分,很难反映出球员的远投能力,所以 97-98 赛季,NBA 又将三分线距离改回原来的 7.25 米。
四分线的推出能更全面反映出 1 名射手的远投能力。2015-2016 赛季,在28-32 英尺(8.53-9.75 米)之间,投篮最准的是快船队的贾马尔·克劳福德,总共 23 次出手命中 14 球,命中率高达 60.9%。排在第 2 位的是湖人队的肯道尔·马绍尔,23 投 11 中,命中率为 47.8%。勇士队的斯蒂芬·库里则以 38.1%(21 投 8 中)的命中率位列第 3 位。NBA 一旦引入四分球制度,投手的春天将就此到来。那些震撼联盟的神射手们又多了一项致命的武器。此外,四分球拉开空间之后,会让内线球员的防守压力变得更小,篮下的肉搏变得更少,更有利于内线的大个子们保持自己的健康。
第二阶段问题:
3. 假设 NBA 联盟决定按照你们的第一阶段的方案设定四分线。这条新规则是否会对三分线的规则产生影响,三分线还是必要的吗?
4. 四分规则一旦出现,可能会改变很多人对于篮球的认识,这有可能是效率最高的一种得分方式。这会对篮球的战术产生什么影响?请举例说明。
整体求解过程概述(摘要)
本文针对NBA联盟建立四分线是否会对三分线规则产生影响和是否有必要保留三分线以及会对篮球战术产生什么影响等问题,以观赏性最大化为目标,运用多种求解方法,对问题建立量化分析、数据分析、物理、逻辑分析、平面动画和类比推理等模型进行求解。
针对问题三,对于四分线规则是否会对三分线规则产生影响,建立量化分析模型和物理模型,进行量化指标得分情况,通过对比得出四分线可能会对三分线产生一定的影响,并建立数学模型来证明是否有保留三分线的必要。
针对问题四,对于四分线会对篮球的战术产生什么影响,首先用层次分析法求出得分方式的权系数,利用权系数建立模糊综合评价对引入四分线的得分方式对战术的影响程度进行粗略计算及评判。再用数据分析法,详细分析三分球进攻(战术)特征及影响因素,然后从三分线规则启用时对原战术的影响,类比推理出四分线对篮球战术所产生的影响,建立平面动画模型,以湖人队为实例,分析三分线对三角战术特征的影响,类比推理出四分线对三角战术特征的影响。用数据分析法对三分线进攻的投篮方式、球员位置、区域、进攻方式、战术配合形式和时间选择的特征进行详细的分析,进而类比推出新的得分方式对战术的影响。
本文通过数据分析得出的三分线进攻特征分析,数据可靠,且参考因素较为详细,误差控制在范围内。最后对我们所建立的一系列模型进行了可行性和可推广性进行了评价和推广。
问题分析:
问题 3 主要是在第一阶段的讨论下,分析四分线规则对三分线规则的影响及三分线是否有存在的必要,通过第一阶段对四分线方案的讨论,我们知道可以从观赏性、逆转的可能性等角度讨论分析。首先,我们把观赏性和逆转的期望进行量化,比较在四分线设定后三分线的数据与以前三分线的数据有无变化,然后通过对比分析四分线设定前后三分规则使用率的变化,另外特别讨论分析了超级远投手库里在四分线规则设定前后三分线的出手的得分率,也可以判断出四分规则对三分线规则有无影响。其次通过对比分析同时存在三分线和四分线的情况与只存在四分线情况的观赏性和逆转的期望来判断三分线是否有保留的必要。
问题 4 主要是分析四分线规则对篮球战术的影响,大范围上讲篮球战术可分为进攻战术、防守战术和争球战术。因为四分球在比赛中的使用有一定的局限性(例如,投手不可能整场比赛一直使用或一整场比赛中不是所有篮球队员都能使用等),所以四分规则对进攻战术、防守战术和争球战术的影响程度有所不同。首先,我们通过比较三分规则对篮球战术的影响,经过类比推理得出四分规则对篮球战术可能产生的影响。其次通过实例战术—三角进攻战术(双掩护+突破或投篮+低位单打)细化到对公牛队在 96—97 赛季和湖人队在 01—02 赛季的数据分析,进而举例说明四分规则对篮球战术的影响。
模型假设:
(1)假设第一阶段结果可靠,可进一步分析。
(2)假设投手的体能投三分和四分基本无变化。
(3)假设比赛中每个队至少名远距离投球队员。
论文缩略图:
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
部分程序代码:(代码和文档not free)
A=[1 3 7 8;1/3 1 5 5;1/7 1/5 1 3;1/8 1/5 1/3 1];
[v,d]=eig(A);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil1=(lamda-4)/3;
cr1=cil1/0.90;
b1w=v(:,1)/sum(v(:,1))
B1=[1 2 3;1/2 1 2;1/3 1/2 1];
[v,d]=eig(B1);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil2=(lamda-3)/2;
cr2=cil2/0.58;
b2w=v(:,1)/sum(v(:,1))
B2=[1 1/5 1/2;5 1 7;2 1/7 1];
[v,d]=eig(B2);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil3=(lamda-3)/2;
cr3=cil3/0.58;
b3w=v(:,1)/sum(v(:,1))
B3=[1 3 5;1/3 1 4;1/5 1/4 1];
[v,d]=eig(B3);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil4=(lamda-3)/2;
cr4=cil4/0.58;
b4w=v(:,1)/sum(v(:,1))
B4=[1 1/5 3;5 1 7;1/3 1/7 1];
[v,d]=eig(B4);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil5=(lamda-3)/2;
cr5=cil5/0.58;
b5w=v(:,1)/sum(v(:,1))
b1w =0.58200.27860.08990.0495
b2w =0.53960.29700.1634
b3w =0.10560.74450.1499
b4w =0.62670.27970.0936
b5w =0.18840.73060.0810A=[1 1 1 4 1 1/2;1 1 2 4 1 1/2;1 1/2 1 5 3 1/2;1/4
1/4 1/5 1 1/3 1/3;1 1 3 1/3 1 1;2 2 2 3 1 1];
[v,d]=eig(A);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil1=(lamda-6)/5;
cr1=cil1/0.90;
b1w=v(:,1)/sum(v(:,1))
B1=[1 1/4 1/2;4 1 3;2 1/3 1];
[v,d]=eig(B1);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil2=(lamda-3)/2;
cr2=cil2/0.58;
b2w=v(:,1)/sum(v(:,1))
B2=[1 1/4 1/4;4 1 1/2;5 2 1];
[v,d]=eig(B2);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil3=(lamda-3)/2;
cr3=cil3/0.58;
b3w=v(:,1)/sum(v(:,1))
B3=[1 3 1/3;1/3 1 1;3 1 1];
[v,d]=eig(B3);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil4=(lamda-3)/2;
cr4=cil4/0.58;
b4w=v(:,1)/sum(v(:,1))
B4=[1 1 7;1 1 7;1/7 1/7 1];
[v,d]=eig(B4);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil5=(lamda-3)/2;
cr5=cil5/0.58;
b5w=v(:,1)/sum(v(:,1))
B5=[1 7 9;1/7 1 5;1/9 1/5 1];
[v,d]=eig(B5);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil6=(lamda-3)/2;
cr6=cil6/0.58;
b6w=v(:,1)/sum(v(:,1))
B6=[1 1/3 5;3 1 7;1/5 1/7 1];
[v,d]=eig(B6);
eigenvalue=diag(d);
lamda=max(eigenvalue);
cil7=(lamda-3)/2;
cr7=cil6/0.58;
b7w=v(:,1)/sum(v(:,1))
b1w =0.14760.17640.19880.04490.19830.2339
b2w =0.13650.62500.2385
b3w =0.10550.33200.5625
b4w =0.3189
0.22110.4600
b5w =0.46670.46670.0667
b6w =0.77200.17340.0545
b7w =0.27900.64910.0719