政安晨:【TensorFlow与Keras实战演绎机器学习】专栏 —— 目录

政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras实战演绎机器学习

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本篇是作者政安晨的专栏TensorFlow与Keras实战演绎机器学习》的总纲专栏文章不断更新,这篇目录总纲也会随着专栏不断更新。


TensorFLow简述

TensorFlow给自己的定位是端到端机器学习平台,作者政安晨对TensorFlow的简述如下:

谷歌的TensorFlow是一个开源的机器学习框架,用于构建和训练各种机器学习模型

它提供了一个高度灵活和可扩展的平台,可以在多种硬件平台上运行,包括移动设备和分布式系统。

TensorFlow的核心是数据流图,它表示了模型的计算过程。

用户可以定义计算图中的各种操作和变量,并使用TensorFlow的API来进行操作。

TensorFlow提供了丰富的操作库,包括数值运算、图像处理、文本处理等。用户可以根据自己的需求选择合适的操作来构建模型。

TensorFlow还提供了强大的自动求导功能,可以自动计算模型中各个参数的梯度。这使得用户可以方便地进行优化算法的实现和训练模型。

此外,TensorFlow还具有分布式计算的能力,可以在多台机器上进行并行计算。这使得TensorFlow可以处理大规模的数据和复杂的模型。

总之,TensorFlow是一个功能强大、灵活可扩展的机器学习框架,被广泛应用于各个领域,包括计算机视觉、自然语言处理、强化学习等。

导入和使用TensorFlow其实并不难:

import tensorflow as tf

关键是如何循序渐进地入门,并针对某个具体目标开展实例,并解决问题。


Keras简述

Keras给自己的定位是一个用 Python 编写的高级神经网络 API,作者政安晨对Keras的简述如下:

Keras是一个开源的高级神经网络库,用于构建和训练深度学习模型。

它是Python编程语言的接口,能够在多种深度学习框架的后端运行,包括TensorFlow、Theano和CNTK、PyTorch等。Keras的设计目标是让用户能够快速、简单地实现和迭代神经网络模型。

Keras提供了一系列丰富的工具和功能,方便用户进行模型构建、层的堆叠、优化算法的选择和训练过程的监控等。

它提供了一种直观的、具有模块化特性的方式来定义模型,可以通过简单地将预定义的层进行堆叠和连接来创建神经网络。在模型构建的过程中,用户可以选择不同的层类型,如全连接层、卷积层、池化层等,并进行定制化的配置。

Keras还提供了一系列内置的优化算法,如随机梯度下降(SGD)、Adam、Adagrad等,用户可以根据任务的要求选择适合的优化算法。此外,Keras还提供了一些常用的损失函数和性能评估指标,如均方误差(MSE)、交叉熵(Cross-Entropy)、准确率等。

Keras的特点之一是其模块化和可扩展性。用户可以通过定制化的方式来创建自定义的层、损失函数或评估指标,并将它们与现有的Keras功能无缝集成。这种灵活性使得Keras适用于各种深度学习任务,如图像分类、自然语言处理、语音识别等。

总的来说,Keras是一个简单易用、高效灵活的机器学习库,使得构建和训练神经网络模型变得更加容易。它的设计哲学是用户友好,追求快速实现和迭代,为机器学习领域的研究人员和工程师提供了一个强大的工具。

导入和使用Keras其实并不难:

from tensorflow import keras
from tensorflow.keras import layers

关键是如何对Keras的API体系和方法有整体认识,并在实际应用中,恰当地选择解决方案。


目录摘要

目录分类根据文章对不同层次用户的使用功效划分。

入门尝试

××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨——基于Anaconda安装TensorFlow并尝试一个神经网络小实例

政安晨——跟着演练快速理解TensorFlow(适合新手入门)

政安晨——基于Ubuntu系统的Miniconda安装TensorFlow并使用Jupyter Notebook在多个Conda虚拟环境下管理测试

政安晨——演绎一个TensorFlow官方的Keras示例(对服装图像进行分类,很全面)

政安晨——示例演绎在TensorFlow中使用 CSV数据(基于Colab的Jupyter笔记)(1.5万字长文超详细)

政安晨:【详细解析】【用TensorFlow从头实现】一个机器学习的神经网络小示例【解构演绎】

政安晨:【示例演绎】【用TensorFlow编写线性分类器】—— 同时了解一点TensorFlow与Keras的基本概念


夯实基础

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(二){两篇文章讲清楚}

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

政安晨:示例演绎TensorFlow的官方指南(二){Estimator}

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

政安晨:【示例演绎机器学习】(一)—— 剖析神经网络:学习核心的Keras API

政安晨:【示例演绎机器学习】(二)—— 神经网络的二分类问题示例(影评分类)

政安晨:【示例演绎机器学习】(三)—— 神经网络的多分类问题示例 (新闻分类)

政安晨:【示例演绎机器学习】(四)—— 神经网络的标量回归问题示例 (价格预测)

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(一)—— 单个神经元

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(二)—— 深度神经网络

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(三)—— 随机梯度下降

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(五)—— Dropout和批归一化

发布 政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(六)—— 二元分类

政安晨:【Keras机器学习实践要点】(一)—— 从快速上手开始

政安晨:【Keras机器学习实践要点】(二)—— 给首次接触Keras 3 的朋友

政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据


实践提高

××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:梯度与导数~示例演绎《机器学习·神经网络》的高阶理解

政安晨:【掌握AI的深度学习工具Keras API】(一)—— 【构建Keras模型的不同方法】(万字长文)

政安晨:【掌握AI的深度学习工具Keras API】(二)—— 【使用内置的训练循环和评估循环】



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/770752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文献阅读笔记(Transformer)

文献阅读笔记(Transformer) 摘要Abstract1、文献阅读1.1 文献题目1.2 文献摘要1.3 研究背景1.4 模型架构1.4.1 Encoder-Decoder1.4.2 注意力机制1.4.3 多头注意力1.4.4 Position-wise Feed-Forward Networks1.4.5 Embeddings and Softmax1.4.6 Positiona…

大小端字节序和字节序的判断+有符号整形和无符号整形的取值范围

大小端存在的意义 大小端字节存储方式(Big-Endian 和 Little-Endian)的存在主要是由于不同计算机体系结构和网络通信标准对数据表示方式的差异所导致的。大小端字节存储方式的存在具有以下意义: 1. 兼容性:不同的计算机系统和网络…

javaWeb网上订餐管理系统

一、简介 在当今社会,随着互联网的普及,网上订餐已经成为了人们生活中不可或缺的一部分。为了方便用户点餐,同时也方便商家管理订单,我设计了一个基于JavaWeb的网上订餐管理系统。该系统分为前台和后台两部分,前台包括…

ChatGPT助力论文写作:详细步骤解析

前言 在论文写作过程中,尽管人工智能工具如ChatGPT能为我们提供有效的辅助,但我们必须铭记,这些工具并不能完全取代我们的思考与判断能力。本指南将详尽地展示如何利用ChatGPT辅助论文写作的全过程,旨在帮助您更高效地完成学术任…

AI基础知识扫盲

AI基础知识扫盲 AIGCLangchain--LangGraph | 新手入门RAG(Retrieval-Augmented Generation)检索增强生成fastGPT AIGC AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。 …

uniapp的配置文件、入口文件、主组件、页面管理部分

pages.json 配置文件,全局页面路径配置,应用的状态栏、导航条、标题、窗口背景色设置等 main.js 入口文件,主要作用是初始化vue实例、定义全局组件、使用需要的插件如 vuex,注意uniapp无法使用vue-router,路由须在pag…

[NKCTF 2024]web解析

文章目录 my first cms全世界最简单的CTF解法一解法二 my first cms 打开题目在最下面发现是CMS Made Simple,版本为2.2.19 扫一下发现存在后台登陆界面,直接访问 用字典爆破下admin的密码为Admin123 然后直接登录,去漏洞库搜一下其实存在…

后端常问面经之Java集合

HashMap底层原理 HashMap的数据结构: 底层使用hash表数据结构,即数组和链表或红黑树 当我们往HashMap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标 存储时,如果出现hash值相同的key,此…

恒创科技:服务器反应慢如何解决?

​  通常来说,访问者会在最初的几秒钟内决定是留在您的网站还是离开。如果页面加载时间超过五秒,访问者离开的可能性就会增加 90%。所以,作为站长们,必须减少服务器响应时间,以确保其网站加载速度更快。以下是减少网…

Mac电脑虚拟显示器:BetterDisplay Pro for Mac v2.0.11激活版

BetterDisplay Pro是一款由waydabber开发的Mac平台上的显示器校准软件,可以帮助用户调整显示器的颜色和亮度,以获得更加真实、清晰和舒适的视觉体验。 软件下载:BetterDisplay Pro for Mac v2.0.11激活版 以下是BetterDisplay Pro的主要特点&…

蔚来JAVA面试(收集)

先叠加,这个是自己找的答案不一定对,只是给我参考看看而已。 一、项目 这个没有,根据实际项目情况来。蔚来比较喜欢拷打项目,所以要对项目非常熟悉(慌) 二、JAVA基础 2.1 Java中的IO模型有用到过吗&#…

Android视角看鸿蒙第九课-鸿蒙的布局

鸿蒙的四大布局 导读 前面八篇文章描述了鸿蒙app的配置文件,关于版本号,开发版本,桌面图标等等配置方式。从这一篇文章开始学习鸿蒙的UI使用方式。 前面我们学习到鸿蒙有ability和page的区分,ability类似Activity但又不完全一样…

如何使用PHP和RabbitMQ实现延迟队列(方式二)?

前言 前几天写了一篇关于PHP和RabbitMQ如何通过插件实现延迟队列的功能。 今天写另外一篇不需要插件的方式,使用RabbitMQ的死信队列(Dead-Letter-Exchanges, DLX)和消息TTL(Time-To-Live)。 这种方法涉及到设置消息…

java Web餐馆订单管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 餐馆订单管理系统是一套完善的web设计系统,对理解JSP java 编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发,数据库为Mysql5.0,使…

vivo x fold 3Pro参数配置 vivo x fold 3Pro续航

vivo XFold3 Pro采用了顶级的AMOLED折叠屏,屏幕预计会配备一块6.53英寸的外屏以及8.03英寸的内屏,分辨率高达2K级别,屏幕支持120Hz刷新率,色彩鲜艳,视觉效果一流。不论是看电影、玩游戏还是日常使用,都能给…

碳实践|企业组织碳排放源识别方法、案例分析,及注意事项

在上一章中讲到“界、源、算、质、查”五步法实现企业组织碳的完整核算流程,本章将针对其中的“源”- “识别排放源”这一步骤来展开,主要分析其识别方法、实操案例,并列举注意事项。 企业识别碳排放源是指在组织边界内找到产生碳排放的设施,…

spark广播变量

广播变量应用场景 由于spark的应用场景通常是分布式场景,在本地集合和分布式集合关联,且本地集合不太大的场景,rdd的处理是在不同的executor中不同的分区处理的,我们定义的全局变量通常是在driver中的,在executor中并…

centos 虚拟机 增加硬盘 虚拟机centos磁盘扩容

2 在centos 7 系统中挂载磁盘 2.1 查看磁盘信息 进入centos 7系统中,输入“# df -h”命令,查看磁盘信息。 这里没有写显示新增的磁盘信息。 2.2 对新加的磁盘进行分区操作 2.2.1 查看磁盘容量和分区 2.2.2 创建分区 a. 选择新增的磁盘(这…

学点儿Java_Day10_集合框架(List、Set、HashMap)

1 简介 ArrayList: 有序(放进去顺序和拿出来顺序一致),可重复 HashSet: 无序(放进去顺序和拿出来顺序不一定一致),不可重复 Testpublic void test1() {String[] array new String[3];//List: 有序 可重复//有序: 放入顺序 与 拿出顺序一致,…

为何ChatGPT日耗电超50万度?

看新闻说,ChatGPT每天的耗电量是50万度,国内每个家庭日均的耗电量不到10度,ChatGPT耗电相当于国内5万个家庭用量。 网上流传,英伟达创始人黄仁勋说:“AI的尽头是光伏和储能”,大佬的眼光就是毒辣&#xff…