AI基础知识扫盲

AI基础知识扫盲

    • AIGC
    • Langchain--
    • LangGraph | 新手入门
    • RAG(Retrieval-Augmented Generation)检索增强生成
    • fastGPT

AIGC

AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。
AIGC的4个主要特征
现阶段国内AIGC多以单模型应用的形式出现,主要分为文本生成、图像生成、视频生成、音频生成,其中文本生成成为其他内容生成的基础。

Langchain–

-知乎讲解
LangChain是一个开源框架,允许从事人工智能的开发者将例如GPT-4的大语言模型与外部计算和数据来源结合起来。该框架目前以Python或JavaScript包的形式提供。

Agents 主要包含以下的主要能力:

  • 内置 Tools
  • 内置组件
  • 自定义工具
    在这里插入图片描述

在这里插入图片描述

LangGraph | 新手入门

细讲

LangGraph 是在 LangChain 基础上的一个库,是 LangChain 的 LangChain Expression Language (LCEL)的扩展。能够利用有向无环图的方式,去协调多个LLM或者状态,使用起来比 LCEL 会复杂,但是逻辑会更清晰。
相当于一种高级的LCEL语言,值得一试。
LangGraph 中最基础的类型是 StatefulGraph,这种图就会在每一个Node之间传递不同的状态信息。然后每一个节点会根据自己定义的逻辑去更新这个状态信息。具体来说,可以继承 TypeDict 这个类去定义状态,下图我们就定义了有四个变量的信息。

  • input:这是输入字符串,代表用户的主要请求。
  • chat_history: 这是之前的对话信息,也作为输入信息传入.
  • agent_outcome: 这是来自代理的响应,可以是 AgentAction,也可以是 AgentFinish。如果是 AgentFinish,AgentExecutor 就应该结束,否则就应该调用请求的工具。
  • intermediate_steps: 这是代理在一段时间内采取的行动和相应观察结果的列表。每次迭代都会更新。

定义图中的节点
在LangGraph中,节点一般是一个函数或者langchain中runnable的一种类。

我们这里定义两个节点,agent和tool节点,其中

  • agent节点就是决定执行什么样的行动,
  • tool节点就是当agent节点选择执行某个行动时,去调用相应的工具。

此外,还需要定义节点之间的连接,也就是边。
**条件判断的边:**定义图的走向,比如Agent要采取行动时,就需要接下来调用tools,如果Agent说当前的的任务已经完成了,则结束整个流程。

普通的边:调用工具后,始终需要返回到Agent,让Agent决定下一步的行动
定义图
然后,我们就可以定义整个图了。值得注意的是,条件判断的边和普通的边添加方式是不一样的。

RAG(Retrieval-Augmented Generation)检索增强生成

RAG详写
预训练+微调
在这里插入图片描述

在 自然语言外理领域,大型语言模型依赖于提示词 (LLM)如GPT-3、BERT等已经取得了显著的进展,它们能够生成连贯、自然的文本,回答问题,并执行其他复杂的语言任务。然而,这些模型存在一些固有的局限性,如"模型幻觉问题”、“时效性问题”和“数据安全问题”。为了克服这些限制,检索增强生成(RAG)技术应运而生
RAG技术结合了大型语言模型的强大生成能力和检索系统的精确性。它允许模型在生成文本时,从外部知识库中检索相关信息,从而提高生成内容的准确性、相关性和时效性。这种方法不仅增强了模型的回答能力,还减少了生成错误信息的风险。

KBQA知识库问答

文本检索流程
步骤1(文本预处理):对原始文本进行清理和规范化(去除停用词、标点符号)文本统一转为小写。接着,采用词干化或词形还原等技术,将单词转换为基本形式,
步骤2(文本索引):构建倒排索引是文本检索的关键步骤。通过对文档集合进行分词,得到每个文档的词项列表,并为每个词项构建倒排列表,记录包含该词项的文档及其位置信息。这种结构使得在查询时能够快速找到包含查询词的文档,为后续的文本检索奠定了基础。
步骤3(文本检索):接下来是查询处理阶段,用户查询经过预处理后,与建立的倒排索引进行匹配。计算查询中每个词项的权重,并利用检索算法(如TFIDF或BM25)对文档进行排序,将相关性较高的文档排在前面。

fastGPT

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!

FastGPT 在线使用:https://fastgpt.in

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/770742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp的配置文件、入口文件、主组件、页面管理部分

pages.json 配置文件,全局页面路径配置,应用的状态栏、导航条、标题、窗口背景色设置等 main.js 入口文件,主要作用是初始化vue实例、定义全局组件、使用需要的插件如 vuex,注意uniapp无法使用vue-router,路由须在pag…

[NKCTF 2024]web解析

文章目录 my first cms全世界最简单的CTF解法一解法二 my first cms 打开题目在最下面发现是CMS Made Simple,版本为2.2.19 扫一下发现存在后台登陆界面,直接访问 用字典爆破下admin的密码为Admin123 然后直接登录,去漏洞库搜一下其实存在…

后端常问面经之Java集合

HashMap底层原理 HashMap的数据结构: 底层使用hash表数据结构,即数组和链表或红黑树 当我们往HashMap中put元素时,利用key的hashCode重新hash计算出当前对象的元素在数组中的下标 存储时,如果出现hash值相同的key,此…

恒创科技:服务器反应慢如何解决?

​  通常来说,访问者会在最初的几秒钟内决定是留在您的网站还是离开。如果页面加载时间超过五秒,访问者离开的可能性就会增加 90%。所以,作为站长们,必须减少服务器响应时间,以确保其网站加载速度更快。以下是减少网…

Mac电脑虚拟显示器:BetterDisplay Pro for Mac v2.0.11激活版

BetterDisplay Pro是一款由waydabber开发的Mac平台上的显示器校准软件,可以帮助用户调整显示器的颜色和亮度,以获得更加真实、清晰和舒适的视觉体验。 软件下载:BetterDisplay Pro for Mac v2.0.11激活版 以下是BetterDisplay Pro的主要特点&…

蔚来JAVA面试(收集)

先叠加,这个是自己找的答案不一定对,只是给我参考看看而已。 一、项目 这个没有,根据实际项目情况来。蔚来比较喜欢拷打项目,所以要对项目非常熟悉(慌) 二、JAVA基础 2.1 Java中的IO模型有用到过吗&#…

Android视角看鸿蒙第九课-鸿蒙的布局

鸿蒙的四大布局 导读 前面八篇文章描述了鸿蒙app的配置文件,关于版本号,开发版本,桌面图标等等配置方式。从这一篇文章开始学习鸿蒙的UI使用方式。 前面我们学习到鸿蒙有ability和page的区分,ability类似Activity但又不完全一样…

如何使用PHP和RabbitMQ实现延迟队列(方式二)?

前言 前几天写了一篇关于PHP和RabbitMQ如何通过插件实现延迟队列的功能。 今天写另外一篇不需要插件的方式,使用RabbitMQ的死信队列(Dead-Letter-Exchanges, DLX)和消息TTL(Time-To-Live)。 这种方法涉及到设置消息…

java Web餐馆订单管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 餐馆订单管理系统是一套完善的web设计系统,对理解JSP java 编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发,数据库为Mysql5.0,使…

vivo x fold 3Pro参数配置 vivo x fold 3Pro续航

vivo XFold3 Pro采用了顶级的AMOLED折叠屏,屏幕预计会配备一块6.53英寸的外屏以及8.03英寸的内屏,分辨率高达2K级别,屏幕支持120Hz刷新率,色彩鲜艳,视觉效果一流。不论是看电影、玩游戏还是日常使用,都能给…

碳实践|企业组织碳排放源识别方法、案例分析,及注意事项

在上一章中讲到“界、源、算、质、查”五步法实现企业组织碳的完整核算流程,本章将针对其中的“源”- “识别排放源”这一步骤来展开,主要分析其识别方法、实操案例,并列举注意事项。 企业识别碳排放源是指在组织边界内找到产生碳排放的设施,…

spark广播变量

广播变量应用场景 由于spark的应用场景通常是分布式场景,在本地集合和分布式集合关联,且本地集合不太大的场景,rdd的处理是在不同的executor中不同的分区处理的,我们定义的全局变量通常是在driver中的,在executor中并…

centos 虚拟机 增加硬盘 虚拟机centos磁盘扩容

2 在centos 7 系统中挂载磁盘 2.1 查看磁盘信息 进入centos 7系统中,输入“# df -h”命令,查看磁盘信息。 这里没有写显示新增的磁盘信息。 2.2 对新加的磁盘进行分区操作 2.2.1 查看磁盘容量和分区 2.2.2 创建分区 a. 选择新增的磁盘(这…

学点儿Java_Day10_集合框架(List、Set、HashMap)

1 简介 ArrayList: 有序(放进去顺序和拿出来顺序一致),可重复 HashSet: 无序(放进去顺序和拿出来顺序不一定一致),不可重复 Testpublic void test1() {String[] array new String[3];//List: 有序 可重复//有序: 放入顺序 与 拿出顺序一致,…

为何ChatGPT日耗电超50万度?

看新闻说,ChatGPT每天的耗电量是50万度,国内每个家庭日均的耗电量不到10度,ChatGPT耗电相当于国内5万个家庭用量。 网上流传,英伟达创始人黄仁勋说:“AI的尽头是光伏和储能”,大佬的眼光就是毒辣&#xff…

Luminar Neo:重塑图像编辑新纪元,Mac与Win双平台畅享创意之旅

在数字时代的浪潮中,图像编辑软件已成为摄影师和设计师们不可或缺的创作工具。Luminar Neo,作为一款专为Mac与Windows双平台打造的图像编辑软件,正以其卓越的性能和创新的编辑功能,引领着图像编辑的新潮流。 Luminar Neo不仅继承…

【日常linux操作命令】

文章目录 1、查看服务器信息1.1、查看内存1.2、查看磁盘1.3、查看CPU信息 2、清理内存缓存2.1、清理PageCache:2.2、清理Dentries和Inodes:2.3、同时清理PageCache、Dentries和Inodes:2.4、清理日志文件2.5、清理临时文件 3、查找文件3.1、查…

WPF使用外部字体,思源黑体,为例子

1.在工程中新建文件夹&#xff0c;命名为“Font"。 2.将下载好的字体文件复制到Font文件夹。 3.在工程中&#xff0c;加入静态资源 <Window.Resources><FontFamily x:Key"SYBold">/AnalyzeImage;Component/Font/#思源黑体 CN Bold</FontFamily…

2.3 Mac OS安装Python环境

Mac OS安装Python环境 和 Linux 发行版类似&#xff0c;最新版的 Mac OS X 也会默认自带 Python 2.x。 我们可以在终端&#xff08;Terminal&#xff09;窗口中输入python命令来检测是否安装了 Python 开发环境&#xff0c;以及安装了哪个版本&#xff0c;如下所示&#xff1…

解決flask-restful提示Did not attempt to load JSON data 问题

在使用flask-restfull进行API开发的时候。一旦我使用类似下面的代码从url或者form中获得参数就会出现报错&#xff1a;Did not attempt to load JSON data because the request Content-Type was not ‘application/json’。 代码如下&#xff1a; # Flask_RESTFUl数据解析 f…