题目
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
进阶:
你能在线性时间复杂度内解决此题吗?
提示:
- 1 <= nums.length <= 10^5
- -10^4 <= nums[i] <= 10^4
- 1 <= k <= nums.length
思路
这是使用单调队列的经典题目。难点是如何求一个区间里的最大值。
暴力方法,遍历一遍的过程中每次从窗口中再找到最大的数值,这样很明显是O(n × k)的算法。
有的人可能会想用一个大顶堆(优先级队列)来存放这个窗口里的k个数字,这样就可以知道最大的最大值是多少了, 但是问题是这个窗口是移动的,而大顶堆每次只能弹出最大值,我们无法移除其他数值,这样就造成大顶堆维护的不是滑动窗口里面的数值了。所以不能用大顶堆。
此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
这个队列应该长这个样子:
class MyQueue {
public:void pop(int value) {}void push(int value) {}int front() {return que.front();}
};
每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
其实在C++中,可以使用 multiset 来模拟这个过程,文末提供这个解法仅针对C++,以下讲解我们还是靠自己来实现这个单调队列。然后再分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列
不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。
来看一下单调队列如何维护队列里的元素。
动画如下:
对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。
此时大家应该怀疑单调队列里维护着{5, 4} 怎么配合窗口进行滑动呢?
设计单调队列的时候,pop,和push操作要保持如下规则:
- pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
- push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,动画如下:
那么我们用什么数据结构来实现这个单调队列呢?使用deque最为合适,关于deque的具体解释大家可以参考STL教程(五):C++ STL常用容器之deque - 知乎 (zhihu.com),我们就提到了常用的queue在没有指定容器的情况下,deque就是默认底层容器。
基于刚刚说过的单调队列pop和push的规则,代码不难实现,如下:
class MyQueue { //单调队列(从大到小)
public:deque<int> que; // 使用deque来实现单调队列// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。// 同时pop之前判断队列当前是否为空。void pop(int value) {if (!que.empty() && value == que.front()) {que.pop_front();}}// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。// 这样就保持了队列里的数值是单调从大到小的了。void push(int value) {while (!que.empty() && value > que.back()) {que.pop_back();}que.push_back(value);}// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。int front() {return que.front();}
};
这样我们就用deque实现了一个单调队列,接下来解决滑动窗口最大值的问题就很简单了,直接看代码吧。
C++代码如下:
class Solution {
private:class MyQueue { //单调队列(从大到小)public:deque<int> que; // 使用deque来实现单调队列// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。// 同时pop之前判断队列当前是否为空。void pop(int value) {if (!que.empty() && value == que.front()) {que.pop_front();}}// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。// 这样就保持了队列里的数值是单调从大到小的了。void push(int value) {while (!que.empty() && value > que.back()) {que.pop_back();}que.push_back(value);}// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。int front() {return que.front();}};
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {MyQueue que;vector<int> result;for (int i = 0; i < k; i++) { // 先将前k的元素放进队列que.push(nums[i]);}result.push_back(que.front()); // result 记录前k的元素的最大值for (int i = k; i < nums.size(); i++) {que.pop(nums[i - k]); // 滑动窗口移除最前面元素que.push(nums[i]); // 滑动窗口前加入最后面的元素result.push_back(que.front()); // 记录对应的最大值}return result;}
};
- 时间复杂度: O(n)
- 空间复杂度: O(k)
再来看一下时间复杂度,使用单调队列的时间复杂度是 O(n)。
有的同学可能想了,在队列中 push元素的过程中,还有pop操作呢,感觉不是纯粹的O(n)。
其实,大家可以自己观察一下单调队列的实现,nums 中的每个元素最多也就被 push_back 和 pop_back 各一次,没有任何多余操作,所以整体的复杂度还是 O(n)。
空间复杂度因为我们定义一个辅助队列,所以是O(k)