StarRocks 助力金融营销数字化进化之路

作者:平安银行 数据资产中心数据及 AI 平台团队负责人 廖晓格

平安银行五位一体,做零售金融的领先银行,五位一体是由开放银行、AI 银行、远程银行、线下银行、综合化银行协同构建的数据化、智能化的零售客户经营模式,这套模式以数据为基础,AI 为内核,通过画像识别,基于场景数据分析,通过高效组织内部资源,为客户提供精准服务,实现零售转型业务增长的第二曲线。 通过颠覆传统“以产品为中心”模式,真正实现以客户为中心、以 AI 、大数据为驱动,以 KYC/KYP/KYATO 方法论打造技术架构及业务模块。在智能银行3.0体系建设中,StarRocks 提供全行级的澎湃数据分析能力,并在行为埋点分析、客户旅程、自助指标查询、CDP 客户标签服务、策略效果分析、AB 实验、统一 API 透明加速等众多业务环节落地应用。

一、金融营销转型

从以产品为中心到数据驱动的客户定制服务

传统金融公司的销售模式以产品为中心,依赖高成本的地推和可能打扰用户的推销方式,容易造成用户体验差,人力成本高,并且转化效率低。因此,我们致力于变革这种模式,通过数据洞察来精准识别和满足客户需求,提供最优的产品和服务。 我们的新模式借鉴互联网公司的“人、货、场”理念:

  • 在“人”方面,运用 KYC 技术精准识别客户身份,并通过多维度数据分析深入理解客户需求,真正做到比客户更了解他们自己。

  • 在“货”方面,借助 KYP 分析确定客户的需求和偏好,从而提供更为合适和全面的产品服务。

  • 在“场”方面,利用 KYATO 策略识别最佳的产品交付方式,匹配丰富而精准的场景,实现交易的有效触达。

在这个过程中,我们坚持以大数据和 AI 驱动决策,真正转向以客户为中心,而非以产品为中心的销售模式。我们强调数据驱动的运营,而非依赖前线销售人员的个人经验,并通过 KYC、KYP 和 KYATO 的方法论实施整个经营策略。这一转变旨在提升服务质量和客户满意度,推动金融营销的新时代。

金融营销模式转型难点

互联网公司的经营模式已高度成熟,而在金融领域,这一模式的应用仍处于起步阶段,因为业务的复杂度,导致落地难度远超互联网公司,因为金融公司在客户偏好识别、产品复杂度、场景频度和流量管理等方面面临独特挑战。

  • 在用户洞察方面,互联网公司能够直接、快速且精准地理解用户喜好。相比之下,金融公司的客户洞察更为复杂,需考虑性格、个人阅历、市场影响和资质等多种因素对用户金融偏好的影响。

  • 在产品层面,互联网产品通常简单易懂、门槛低,适合大众使用。而金融产品则因其复杂性、高合规要求和多变的售后情况而显得与众不同。

  • 在渠道和场景方面,互联网产品作为生活必需品,主要通过单一的 APP 渠道触达用户。然而,金融产品的使用场景相对低频,需要通过 APP、远程服务、线下网点和团队等多元渠道与客户接触。 为了应对这些挑战并支持交易过程中的复杂需求,我们设计了智能银行3.0。这一设计旨在整合系统资源,优化金融服务,以适应金融行业的特性和客户需求,引领金融领域的营销模式转型。

智能银行 3.0 建设蓝图

智能银行 3.0 架构体系整合了运营经理、产品经理和数据分析师的角色,在统一门户上进行管理。系统设计围绕人、货、场三个核心要素展开。

  • 在“人”方面,运用数据 KYC、客户行为分析、客户关系管理和商户关系管理,实现对用户的全方位统一管理。

  • 在“货”方面,通过内容中心进行统一的商品管理,并借助统一货架进行商品上架、活动管理等操作。

  • 在策略层面,构建了三层策略体系。策略大脑根据用户行为将合适的产品推荐给客户,包括宫格、旅程和场景等策略的处理。通过 AB 测试,将最优策略呈现给客户,淘汰效果不佳的策略。

  • 在渠道方面,致力于识别客户的渠道偏好,通过最优渠道触达客户,并采用最优表达方式吸引客户的注意力,确保高效执行和智能触达。 整体架构上涉及到诸多技术挑战,StarRocks 在其中发挥了关键作用,助力平安银行实现策略的统一管理、内容体系化管理和渠道高效执行,以提供更加智能化和个性化的金融服务。

二、StarRocks 数字化驱动

选中 StarRocks 的原因

StarRocks 以其澎湃性能脱颖而出,并且协议简单、具备实时分析能力和数据湖联邦分析能力。StarRocks 团队以其极客精神和对客户需求的真诚关注,确保合作过程顺畅无阻。其灵活的物化视图和透明改写功能为我们带来了重要启示。这种创新技术能够在不改变用户体验的前提下,显著提升查询性能,为我们的数据处理和分析工作提供了强有力的支持。选择 StarRocks,即选择了高效、用户友好的数据解决方案。

StarRocks 在金融营销场景的应用

StarRocks 在金融营销复杂场景中的关键作用:

  • 渠道与策略:StarRocks 助力实现实时埋点数据回流,进行多表关联查询和多维分析,加速业务对埋点行为数据的实时探索。

  • 标签管理:以往割裂的模型表和不支持 JOIN 的存储问题得以解决。借助 StarRocks,实时和离线数据得以融合,实现高效、实时的数据分析。

  • 策略平台:策略大脑、渠道选择和客户触达等策略,依赖 StarRocks 快速评估与计算。

  • AB 实验与客群分析:StarRocks 支持灵活的客户分组和在线实时生成客群。以前 T+1 的客群分析现可实时完成,进而快速生成AB实验指标,为实验效果分析提供即时支持。

总结来说,StarRocks 在金融营销的多个关键环节中发挥着不可或缺的作用,通过实时数据处理和高效分析,推动业务决策的精准性和时效性提升。

StarRocks 在 CDP 场景的应用

基于 StarRocks 的 CDP 平台为策略投放提供了强大的支持:

  • 数据整合:StarRocks 实现了实时与离线数据的无缝融合,以往割裂的实时和离线数据现在得以统一管理。大数据平台的离线标签表被快速导入到 StarRocks,同时海量的实时标签和行为事件数据也能实时写入,实现数据集中管控。

  • 高效分析:借助 StarRocks 的多表 JOIN 能力、灵活标签筛选和 Bitmap 丰富运算,能够在秒级完成画像类分析、客户分群、人群洞察和标签饱和度计算等任务。

  • 简化复杂计算:通过物化视图,原本复杂的 KYC 宫格人群计算变得更为便捷。

  • 深度应用:人群数据能够出仓,用于进一步的深度分析和应用。

总的来说,基于 StarRocks 的 CDP 平台,提供灵活便捷的客群圈选和画像分析的能力,来支持精准营销投放,通过高效的数据管理和深度分析,实现客群洞察和策略优化,提升营销效果。

StarRocks 在指标场景的应用

指标场景的分层设计:

  • 物理层:数据工程师依据业务和数据模型的理解,通过事实表、维度表和对象构建了实体关系(ER)模型。这一层定义了表之间的关系,为上层业务提供可靠的数据基础模型。

  • 逻辑层:借助指标平台,根据数据工程师定义的模型,将对象转化为一张全行超宽表。例如,将客户对象的所有维度目录和指标目录整合到一张表中,简化了业务分析工作。业务用户无需理解复杂的底层 ER 关系,只需拖动维度和指标即可轻松应用数据。

  • 应用层:根据用户定义的场景和查询行为,构建了物化的 DWS 层指标,显著提升了查询性能。基于用户的查询行为,可以持续优化 DWS 的物化逻辑。有了 StarRocks 的支撑,DataAPI 能够提供毫秒级查询,报表支持秒级查询,而自助分析则能在几十秒内完成查询。

在实施过程中,我们基于 StarRocks 进行了专门设计,以确保整个指标应用系统的高效运行和灵活扩展。这一创新架构旨在提升数据访问速度,简化数据分析过程,并为用户提供更优质的查询和分析体验。

在底层 ODS 定义完数据 ER 关系后,我们致力于实现指标的“一处定义、多处使用”。数据团队一次性定义指标口径,指标应用用户根据场景需求使用指标。平台通过应用场景进行物化调度,满足指标应用服务的 SLA 需求。 设计上划分了三个层次:

  1. 明细层:通过 StarRocks on k8s 直接查询 Hive 外表,快速返回自助分析结果。

  2. 指标层:将自助分析查询结果物化到 StarRocks 内部表,便于制作高层关注的看板和卡片。若内部体量较大,可通过物化视图上卷进一步提升查询速度。

  3. 缓存层:对物化视图或内表查询结果进行缓存,以高性能存储或缓存应对极高并发的应用接口请求。

整体架构上,底层基于大数据的 Hive 表,上层通过 StarRocks 加速查询。这意味着未来所有大数据平台的查询都可以通过 StarRocks 物化的逻辑进行高效查询,通过智能物化调度提升整个大数据平台 SQL 查询性能,并降低资源使用成本,提升整体集群的吞吐量。未来,我们将基于这一模式,在行内进一步推广物化和透明改写能力,旨在提供更简洁、更高效、更具成本效益的大数据解决方案。

三、未来展望

金融业务模式上,通过“以产品为中心”改变到“以客户为中心”的经营模式上,虽然困难重重,但是是业务发展的必经之路。对于技术团队来说,怎么实现“以客户为中心”,也是值得深度思考的。当前大数据发展越来越快,技术复杂度也越来越高,组件越来越丰富,对于用户的理解难度也越来越高,但是其实用户的需求极其简单,他们希望执行一段统计分析 SQL,希望做一张报表,希望定义一个指标/标签/特征,希望定义一个数据服务 API,仅此而已。因此,对于平台来说,我们需要坚持贯彻“以客户为中心”,将复杂的计算和大数据架构封装在平台产品内部,为用户提供简洁易用的平台能力,为用户提供直接、高效的查询能力。

用户只需定义 SQL 和 SLA 指标,由平台将复杂的离线计算、实时计算隐藏在系统底层,希望使用大数据整体架构变得如同使用 MySQL 一样简单。以 StarRocks 澎湃的性能为基石,依托多表物化视图,自动化的构建数仓 DWS 层,自动化的做数据调度,把复杂的离线计算、实时计算,都屏蔽在冰山之下,为客户提供一个简洁高效的查询性能。 最后,也感谢 StarRocks 团队在平安银行的大力支持。

👇点击下方链接,观看完整演讲内容~
平安银行:StarRocks 助力金融营销数智进化_哔哩哔哩_bilibili

StarRocks小助手

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768848.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Hadoop大数据技术】——Hadoop高可用集群(学习笔记)

📖 前言:Hadoop设计之初,在架构设计和应用性能方面存在很多不如人意的地方,如HDFS和YARN集群的主节点只能有一个,如果主节点宕机无法使用,那么将导致HDFS或YARN集群无法使用,针对上述问题&#…

值得参考的golang语言开发规范:Uber Go 语言编码规范,一些优秀的技巧可以提升代码的质量、避免代码缺陷和bug漏洞

值得参考的golang语言开发规范:Uber Go 语言编码规范,一些优秀的技巧可以提升代码的质量、避免代码缺陷和bug漏洞。 Uber Go 语言编码规范 Uber 是一家美国硅谷的科技公司,也是 Go 语言的早期 adopter。其开源了很多 golang 项目,…

UE5 LiveLink 自动连接数据源,以及打包后不能收到udp消息的解决办法

为什么要自动连接数据源,因为方便打包后接收数据,这里我是写在了Game Instance,也可以写在其他地方,自行替换成Beginplay和Endplay 关于编辑器模式下能收到udp消息,打包后不能收到消息的问题有两点需要排查,启动打包后…

Jmeter脚本优化——CSV数据驱动文件

使用 CSV 数据文件设置实现参数化注册 1) 本地创建 csv 文件,并准备要使用的数据,这里要参数化的是注册的用户名和邮箱。所以在 csv 文件中输入多组用户名和邮箱。 2) 通过测试计划或者线程组的右键添加->配置元件->CSV…

亚信安慧AntDB解析:数据库技术的新里程碑

AntDB简化了开发运维,更提高了数据库的易用性。AntDB是一种创新的数据库管理系统,其设计理念旨在让用户能够更便捷地进行数据库操作,减少繁琐的配置和管理工作,提升工作效率。 通过AntDB,用户可以快速部署和管理数据库…

Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略

Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略 目录 scikit-learn-extra的简介 scikit-learn-extra的安装 scikit-learn-extra的案例应用 1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测 scikit-learn-extra…

探索网络深处:爬虫技术的奥秘

目录 引言1. 网络的庞大性与信息的丰富性2. 爬虫在收集和分析网络信息方面的重要作用 一、 什么是爬虫?二、爬虫的应用领域三、爬虫的工作流程四、爬虫技术所面临的挑战与解决方案五、爬虫技术设计的伦理与法律问题文末推荐 引言 网络是一个庞大而丰富的宇宙&#…

ChatGPT已成澳洲“懒学生”们最爱,各大学加强检查人工智能辅助作弊行为!

据报道,越来越多的学生开始使用人工智能来写作业,但各所大学也在加倍努力,想方设法将他们一网打尽。 ▲图片来源于网络 悉尼大学透露,2023年有330份作业是用人工智能完成的,而新南威尔士大学最近也表示,他…

【yolo算法水果新鲜程度检测】

Yolo(You Only Look Once)系列算法是一类流行的一阶段实时目标检测模型,在水果检测领域有着广泛的应用。因其高效性和实时性而受到青睐,可用于识别和定位图像中不同种类的水果以及水果的新鲜度。 YOLOv3 已被用于水果商品的检测分…

Java基础-正则表达式

文章目录 1.基本介绍2.正则底层实现1.matcher.find()完成的任务2.matcher.group(0)分析1.源代码2.解释(不分组)3.解释(分组) 3.总结 3.正则表达式语法1.基本介绍2.元字符的转义符号1.基本介绍2.代码实例 3.字符匹配符1.基本介绍2.…

HTML_CSS学习:表格、表单、框架标签

一、表格_跨行与跨列 1.相关代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>表格_跨行与跨列</title> </head> <body><table border"1" cellspacing"0&qu…

学员分享丨学习华为认证,为什么建议报班学习

我一直对计算机科学有着浓厚的兴趣&#xff0c;但在我遇见誉天教育之前&#xff0c;我只是独自摸索&#xff0c;没有明确的方向和方法。然而&#xff0c;在誉天教育&#xff0c;我找到了一个真正为学生着想的地方。这里有一支专业且热情的教师队伍&#xff0c;他们不仅在课堂上…

毕业设计:日志记录编写(3/17起更新中)

目录 3/171.配置阿里云python加速镜像&#xff1a;2. 安装python3.9版本3. 爬虫技术选择4. 数据抓取和整理5. 难点和挑战 3/241.数据库建表信息2.后续进度安排3. 数据处理和分析 3/17 当前周期目标&#xff1a;构建基本的python环境&#xff1a;运行爬虫程序 1.配置阿里云pytho…

【Postman】工具使用介绍

一、postman工具介绍 1.什么是postman postman是谷歌开发的一款网页调试和接口测试工具&#xff0c;能够发送任何请求类型的http请求&#xff0c;支持GET/POST/PUT/DELETE等方法。postman简单易用&#xff0c;可以直接填写URL&#xff0c;header&#xff0c;body就可以发送一…

训练自己的声音模型,效果超级逼真,最牛的开源声音克隆项目 GPT-SoVITS

GPT-SoVITS 是一个开源的声音克隆项目&#xff0c;可以训练自己的声音模型。 效果非常好&#xff0c;使用超级简单。 如果你有声音克隆的需求&#xff0c;必须要试试这个项目。 不说废话&#xff0c;直接看怎么训练自己的声音模型。 1. 安装 我的是Windows系统&#xff0c…

Linux中的常用基础操作

ls 列出当前目录下的子目录和文件 ls -a 列出当前目录下的所有内容&#xff08;包括以.开头的隐藏文件&#xff09; ls [目录名] 列出指定目录下的子目录和文件 ls -l 或 ll 以列表的形式列出当前目录下子目录和文件的详细信息 pwd 显示当前所在目录的路径 ctrll 清屏 cd…

c 语言 三元搜索 - 迭代与递归(Ternary Search)

计算机系统使用不同的方法来查找特定数据。有多种搜索算法&#xff0c;每种算法更适合特定情况。例如&#xff0c;二分搜索将信息分为两部分&#xff0c;而三元搜索则执行相同的操作&#xff0c;但分为三个相等的部分。值得注意的是&#xff0c;三元搜索仅对排序数据有效。在本…

SOC 子模块---中断控制器

中断控制器对soc 中的各个外设进行中断管理&#xff0c;进行优先权排队&#xff0c;并送出IQR信号给CPU&#xff1b; 中断控制器在整个系统中的结构&#xff1a; IRQ<n>来源于不同的中断源&#xff0c;比如&#xff1a;I2C,SPI等&#xff0c;INTC收集这些中断&#xff0…

HTTP状态码(3)

HTTP 状态码负责表示客户端 HTTP 请求的返回结果、标记服务器端的处理是否正常、通知出现的错误等工作 状态码告知从服务器端返回的请求结果 状态码的职责是当客户端向服务器端发送请求时&#xff0c;描述返回的请求结果。借助状态码&#xff0c;用户可以知道服务器端是正常…

AIGC实战——Transformer模型

AIGC实战——Transformer模型 0. 前言1. T52. GPT-3 和 GPT-43. ChatGPT小结系列链接 0. 前言 我们在 GPT (Generative Pre-trained Transformer) 一节所构建的 GPT 模型是一个解码器 Transformer&#xff0c;它逐字符地生成文本字符串&#xff0c;并使用因果掩码只关注输入字…