云原生(五)、Docker-Swarm集群

基础环境说明

1、环境准备

1、启动4台服务器(在同一个网段内)。
2、重命名4台服务器,方便区分。

hostnamectl set-hostname swarm1
reboot

请添加图片描述

安装docker。参考文章:云原生(二)、Docker基础

2、DockerSwarm架构

在 Docker 中,Swarm 是一种容器编排工具,它允许用户在一个集群中管理多个 Docker 容器。Docker Swarm 允许您将多个 Docker 守护进程组织成一个虚拟的 Docker 引擎,这个引擎可以用来部署您的容器化应用程序。通过 Docker Swarm,您可以轻松地管理、扩展和调度容器,以便适应不同规模的工作负载。

Docker Swarm 提供了以下主要功能:

  1. 服务编排: 允许您定义和管理多个服务,并将它们部署到 Swarm 集群中的节点上。
  2. 高可用性: Docker Swarm 提供了高可用性的容器服务,如果某个节点出现故障,Swarm 将会重新分配容器到其他可用节点上,从而保证您的应用程序的可用性。
  3. 负载均衡: Swarm 提供内置的负载均衡功能,可以将流量分发到集群中运行的容器服务上。
  4. 自动扩展: Swarm 允许您根据工作负载的需求自动扩展容器服务,以应对流量的变化。
  5. 安全性: Docker Swarm 提供了各种安全特性,包括 TLS 加密、角色基础访问控制(RBAC)等,以保护您的集群和容器。

官网地址: https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

管理节点Manage与工作节点Worker。他们遵循高可用协议Raft,即保证大多数节点存活才能使用,在这里,就是需要2台及以上的Mange节点存活。
请添加图片描述

3、搭建集群环境

1、初始化第一个节点

使用命令docker swarm init --advertise-addr ip

[root@swarm1 ~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00inet 127.0.0.1/8 scope host lovalid_lft forever preferred_lft foreverinet6 ::1/128 scope host valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000link/ether fa:16:3e:0f:69:6a brd ff:ff:ff:ff:ff:ffinet 192.168.2.3/20 brd 192.168.15.255 scope global dynamic noprefixroute eth0valid_lft 315355602sec preferred_lft 315355602secinet6 fe80::f816:3eff:fe0f:696a/64 scope link valid_lft forever preferred_lft forever
4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default link/ether 02:42:57:f2:17:06 brd ff:ff:ff:ff:ff:ffinet 172.17.0.1/16 brd 172.17.255.255 scope global docker0valid_lft forever preferred_lft foreverinet6 fe80::42:57ff:fef2:1706/64 scope link valid_lft forever preferred_lft forever#暴露第一个节点 
[root@swarm1 ~]# docker swarm init --advertise-addr 192.168.2.3
Swarm initialized: current node (hi3e42klj5okwv48u13e9phmd) is now a manager.#添加工作节点的命令
To add a worker to this swarm, run the following command:docker swarm join --token SWMTKN-1-0ac1f68fpc9c7laupcj53q7sgp650m5204ll4snj8npi8hl4x6-eqjzl0u227agfl3pe6mrk8r8m 192.168.2.3:2377#添加管理节点的命令
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.
2、将第二台服务器加入工作节点

在第二台服务器中,使用第一步中得到的token命令

[root@swarm2 ~]# docker swarm join --token SWMTKN-1-0ac1f68fpc9c7laupcj53q7sgp650m5204ll4snj8npi8hl4x6-eqjzl0u227agfl3pe6mrk8r8m 192.168.2.3:2377
This node joined a swarm as a worker.
3、将第三台服务器加入管理节点

在第一台服务器中,使用第一步中的添加管理节点命令

[root@swarm1 ~]# docker swarm join-token manager
To add a manager to this swarm, run the following command:docker swarm join --token SWMTKN-1-0ac1f68fpc9c7laupcj53q7sgp650m5204ll4snj8npi8hl4x6-cr4cg020fta2etrxqc72zs3el 192.168.2.3:2377

得到token命令后,在第三台服务器中使用该命令

[root@swarm3 ~]# docker swarm join --token SWMTKN-1-0ac1f68fpc9c7laupcj53q7sgp650m5204ll4snj8npi8hl4x6-cr4cg020fta2etrxqc72zs3el 192.168.2.3:2377
This node joined a swarm as a manager.
[root@swarm3 ~]# 
4、第四台服务器加入管理节点
[root@swarm4 ~]# docker swarm join --token SWMTKN-1-0ac1f68fpc9c7laupcj53q7sgp650m5204ll4snj8npi8hl4x6-cr4cg020fta2etrxqc72zs3el 192.168.2.3:2377
This node joined a swarm as a manager.
5、检查集群部署结果

在管理者节点中使用命令

Leader即主节点,Reachable为子节点

[root@swarm4 ~]# docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
hi3e42klj5okwv48u13e9phmd     swarm1     Ready     Active         Leader           25.0.4
h9hjplib3dsql1k8v2x2qutax     swarm2     Ready     Active                          25.0.4
seozhuxajbfkwu95d9ox14uej     swarm3     Ready     Active         Reachable        25.0.4
8vxwp3m4sk24hhkethpd6axxs *   swarm4     Ready     Active         Reachable        25.0.4
6、注意

如果加入集群时,当前服务器已经存在一个集群了,需要先离开当前集群,才能加入新的

docker swarm leave --force

4、Raft协议理解

Raft协议是一种共识算法,用于在分布式系统中实现一致性。它通过确保所有节点在某个时刻对系统状态达成一致,从而保证系统的可靠性和正确性。Raft协议由Diego Ongaro和John Ousterhout在2014年提出,并设计用于替代Paxos算法,以简化分布式系统的实现和理解。

在Raft协议中,系统中的节点被分为领导者(leader)、跟随者(follower)和候选人(candidate)。领导者负责接收客户端请求并复制状态到其他节点,而跟随者和候选人则遵从领导者的指示。如果领导者失效,系统中的其他节点可以通过选举新的领导者来维持一致性。

Raft协议通过简化算法和引入领导者的概念,使得其更易于理解和实现。这种可理解性使得Raft成为了分布式系统领域中备受青睐的共识算法之一,被广泛应用于诸如分布式数据库、分布式存储系统等领域。

我们上面的环境搭建中,采用的是3管理节点,1工作节点的方式。

如果是双主双从搭建,现在我们只有两个管理节点,如果一个节点挂了,另外一个节点也不能用,Raft一致性算法,是确保大多数节点存活才可以用,至少大于1台! 生产环境最少3 manager

实验

我们拥有3台管理节点,分别是swarm1、swarm3、swarm4,其中Leader节点是swarm1,1台工作节点swarm2.

在我们上面搭建好的集群中,使用命令systemctl stop docker让服务器中的docker停止工作。观察Raft的选举和工作状态

sudo systemctl stop docker	#停止docker
sudo systemctl start docker #启动docker
测试1
  • 停止swarm2,在其他管理节点执行docker node ls,集群仍然存活,工作节点swarm2状态为down
[root@swarm3 ~]# docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
hi3e42klj5okwv48u13e9phmd     swarm1     Ready     Active         Reachable        25.0.4
h9hjplib3dsql1k8v2x2qutax     swarm2     Down      Active                          25.0.4
seozhuxajbfkwu95d9ox14uej *   swarm3     Ready     Active         Reachable        25.0.4
8vxwp3m4sk24hhkethpd6axxs     swarm4     Ready     Active         Leader           25.0.4
测试2
  • 停止swarm3,在其他管理节点执行docker node ls,集群仍然存活
[root@swarm4 ~]# docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
hi3e42klj5okwv48u13e9phmd     swarm1     Ready     Active         Leader           25.0.4
h9hjplib3dsql1k8v2x2qutax     swarm2     Ready     Active                          25.0.4
seozhuxajbfkwu95d9ox14uej     swarm3     Down      Active         Unreachable      25.0.4
8vxwp3m4sk24hhkethpd6axxs *   swarm4     Ready     Active         Reachable        25.0.4
  • 再停止swarm4,在其他管理节点执行docker node ls,集群停止工作
[root@swarm4 ~]# docker node ls
Error response from daemon: rpc error: code = DeadlineExceeded desc = context deadline exceeded
测试3

一开始就直接停止Leader节点swarm1,在其他管理节点执行docker node ls,集群仍然存活。推举出了新的Leader

[root@swarm4 ~]# docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
hi3e42klj5okwv48u13e9phmd     swarm1     Ready     Active         Unreachable           25.0.4
h9hjplib3dsql1k8v2x2qutax     swarm2     Ready     Active                          25.0.4
seozhuxajbfkwu95d9ox14uej     swarm3     Down      Active         Leader      25.0.4
8vxwp3m4sk24hhkethpd6axxs *   swarm4     Ready     Active         Reachable        25.0.4
测试4
  • 停止swarm3,在其他管理节点执行docker node ls,集群仍然存活
[root@swarm4 ~]# docker node ls
ID                            HOSTNAME   STATUS    AVAILABILITY   MANAGER STATUS   ENGINE VERSION
hi3e42klj5okwv48u13e9phmd     swarm1     Ready     Active         Leader           25.0.4
h9hjplib3dsql1k8v2x2qutax     swarm2     Ready     Active                          25.0.4
seozhuxajbfkwu95d9ox14uej     swarm3     Down      Active         Unreachable      25.0.4
8vxwp3m4sk24hhkethpd6axxs *   swarm4     Ready     Active         Reachable        25.0.4
  • 再停止swarm1,在其他管理节点执行docker node ls,集群停止工作。且由于Leader节点停止工作,集群无法再次重启。只能重新初始化集群设置。
[root@swarm3 ~]# docker node ls
Error response from daemon: rpc error: code = Unknown desc = The swarm does not have a leader. It's possible that too few managers are online. Make sure more than half of the managers are online.
总结

1、先保证有两个管理节点,挂掉其中一台。nodels 命名不可用
2、如果有work节点离开了,状态会更新为down,不可用了
3、可以没有Work节点,全是管理节点
4、leader挂了,就全部都挂掉了

Raft保证:至少要保证有两个及两个以上的管理者节点,集群才可以使用,否则直接挂掉

所有管理者节点挂掉的话。需要全部移除集群,重新初始化才可以再次使用了

5、swarm实战

示例1

Nginx集群部署。

#在任意manage节点执行命令 
[root@swarm1 ~]# docker service create -p 8888:80 --name myNginx nginx
sxa1g4p45k268e6do9td0y2ie
overall progress: 1 out of 1 tasks 
1/1: running   [==================================================>] 
verify: Service converged 
[root@swarm1 ~]# docker service ls
ID             NAME      MODE         REPLICAS   IMAGE          PORTS
sxa1g4p45k26   myNginx   replicated   1/1        nginx:latest   *:8888->80/tcp# 成功后我们会发现,4台服务器的ip:8888都能成功访问nginx的初始页面。
# 通过docker service启动服务,在任何服务器都可以访问到该服务,不需要在启动容器的节点中访问。

查看我们刚刚部署的nginx的具体信息

[root@swarm1 ~]# docker service inspect --pretty myNginxID:             sxa1g4p45k268e6do9td0y2ie
Name:           myNginx
#副本数量
Service Mode:   ReplicatedReplicas:      1     
Placement:
UpdateConfig:Parallelism:   1On failure:    pauseMonitoring Period: 5sMax failure ratio: 0Update order:      stop-first
RollbackConfig:Parallelism:   1On failure:    pauseMonitoring Period: 5sMax failure ratio: 0Rollback order:    stop-first
ContainerSpec:Image:         nginx:latest@sha256:1a53eb723d17523512bd25c27299046cfa034cce309f4ed330c943a304513f59Init:          false
Resources:
Endpoint Mode:  vip
Ports:PublishedPort = 8888Protocol = tcpTargetPort = 80PublishMode = ingress 
动态扩缩容
  • 创建时启动多个副本
docker service create  --replicas 3 --name myNginx1 nginx
  • 动态更新

docker service update --replicas 3 myNginx

[root@swarm1 ~]# docker service ls
ID             NAME       MODE         REPLICAS   IMAGE          PORTS
sxa1g4p45k26   myNginx    replicated   1/1        nginx:latest   *:8888->80/tcp
vsk8icrao3bk   myNginx1   replicated   3/3        nginx:latest   
[root@swarm1 ~]# docker service update --replicas 3 myNginx
myNginx
overall progress: 3 out of 3 tasks 
1/3: running   [==================================================>] 
2/3: running   [==================================================>] 
3/3: running   [==================================================>] 
verify: Service converged 
[root@swarm1 ~]# docker service ls
ID             NAME       MODE         REPLICAS   IMAGE          PORTS
sxa1g4p45k26   myNginx    replicated   3/3        nginx:latest   *:8888->80/tcp
vsk8icrao3bk   myNginx1   replicated   3/3        nginx:latest
  • 扩缩容
docker service scale myNginx1 =6
  • 回滚

docker service rollback myNginx

[root@swarm1 ~]# docker service rollback myNginx
myNginx
rollback: manually requested rollback 
overall progress: rolling back update: 1 out of 1 tasks 
1/1: running   [==================================================>] 
verify: Service converged 
[root@swarm1 ~]# docker service ls
ID             NAME       MODE         REPLICAS   IMAGE          PORTS
sxa1g4p45k26   myNginx    replicated   1/1        nginx:latest   *:8888->80/tcp
vsk8icrao3bk   myNginx1   replicated   3/3        nginx:latest  #线上灰度发布的原理
[root@swarm1 ~]# docker service update --image nginx:1.18.0-alpine --update-parallelism 1 --update-delay 10s myNginx1
myNginx1
overall progress: 1 out of 3 tasks 
1/3: running   [==================================================>] 
2/3: preparing [=================================>                 ] 
3/3:   
#一台一台机器逐次启动,直到所有容器更新完成
#docker service update --help 查看帮助
示例2
  • 创建一个集群网络
docker network create -d overlay tomcat-net
  • 创建service
docker service create --name tomcat --network tomcat-net -p 8080:8080 --replicas 3 tomcat
  • 扩缩容
docker service scale tomcat=6
  • 删除服务
docker service rm id
#服务一旦移除,所有容器都会被移除
示例3
  • 创建网络
docker network create -d overlay demo
  • 创建mysql服务
rootanode111 ~]# docker service create --name mysql --env MYSQL_ROOT_PASSWORD=root --env MYSQL_DATABASE=wordpress --network demo --mount type=volume,source=mysql-data,destination=/var/lib/mysql mysql:5.7.24
  • 创建wordpress服务
[root@node111 ~]# docker service create --name wordpress -p 80:80 --env WORDPRESS_DB_USER=root --env WORDPRESS_DB_PASSWORD=root --env WORDPRESS_DB_HOST=mysql:3306 --env WORDPRESS_DB_NAME=wordpress --network demo wordpress

成功后,4台服务器的ip:80都能访问到我们的wordpress。
在这里插入图片描述

我们也可以对刚刚运行的2个服务进行动态扩缩容

[root@swarm1 ~]# docker service scale mysql=4
mysql scaled to 4
overall progress: 4 out of 4 tasks 
1/4: running   [==================================================>] 
2/4: running   [==================================================>] 
3/4: running   [==================================================>] 
4/4: running   [==================================================>] [root@swarm1 ~]# docker service scale wordpress=4
wordpress scaled to 4
overall progress: 4 out of 4 tasks 
1/4: running   [==================================================>] 
2/4: running   [==================================================>] 
3/4: running   [==================================================>] 
4/4: running   [==================================================>] 

服务模式
服务模式一共有两种:Ingress和Host,如果不指则默认的是Ingress;

  • Ingress模式(overlay网络)下,到达Swarm任可节点的8080端口的流量,都会映射到任何服务副本的J部80端口,就算该节点上没有tomcat服务副本也会映射;
  • Host模式下,仅在运行有容器副本的机器上开放端口访问,使用Host模式的命令如下:
docker service create --name tomcat
--network tomcat-net
--publish published=8080,target=8080,modehost
--replicas 2
tomcat:7.0.96-jdk8-openjdk
docker service ps tomcat

6、swarm相关概念

  • 1.Docker Engine集成集群管理
    使用Docker Engine Cll 创建一个Docker Engine的swarm模式,在集群中部署应用程序服务。链接数以万计的docker节点。
  • 2.去中心化设计
    Swarm角色分为Manager和Worker节点,Manager节点故障不影响应用使用,raft协议原则。
  • 3.扩容缩容
    可以声明每个服务运行的容器数量,通过添加或删除容器数自动调整期望的状态。
  • 4.期望状态协调
    Swarm Manager节点不断监视集群状态,并调整当前状态与期望状态之间的差异。例如,设置一个服务运行10个副本容器,如果两个副本的服务器节点崩溃,Manager将创建两个新的副本替代崩溃的副本。并将新的副本分配到可用的worker节点。
  • 5.多主机网络
    可以为服务指定overlay网络。当初始化或更新应用程序时,Swarm manager会自动为overlay网络上的容器分配IP地址。
  • 6.服务发现
    Swarm manager节点为集群中的每个服务分配唯一的DNS记录和负载均衡VIP。可以通过Swarm内置的DNS服务器查询集群中每个运行的容器。
  • 7.负载均衡
    实现服务副本负载均衡,提供入口访问。也可以将服务入口暴露给外部负载均衡器再次负载均衡。
  • 8.安全传输
    Swarm中的每个节点使用TLS相互验证和加密,确保安全的其他节点通信。
  • 9.滚动更新
    升级时,逐步将应用服务更新到节点,如果出现问题,可以将任务回滚到先前版本
工作模式

在这里插入图片描述

服务副本与全局服务

在docker swarm中部署的service,有2种类型。

  • replicated(副本)
  • global(全局)启动一个服务,会在所有节点上,自动拉起一个容器

下面的图显示了一个有3个副本的service(黄色)和一个global的service(灰色)在这里插入图片描述
请添加图片描述

 --mode string     Service mode ("replicated", "global", "replicated-job", "global-job") (default "replicated")

补充Label的说明

#我们讨论了 service 部署的两种模式:global mode 和 replicated mode。无论采用 global mode 还是 replicated mode,副本运行在哪些节点都是由 Swarm 决定的,作为用户我们有没有可能精细控制 service 的运行位置呢?
答:能,使用 1abe1

逻辑分两步:
1、为每个 node 定义 label.
2、设置 service 运行在指定 label的 node 上.

docker node update --label-add env=test 节点1
docker node update --label-add env=prod swarm-worker2#指定在哪台服务器中拉起这个服务。很少使用docker service create \--constraint node.labels jenv-=test \--replicas 3\--name my_web--publish 8080:80 \httpd#更新 service,将其迁移到生产环境:
docker service update --constraint-rm node.labels.env==test my_web
docker service update --constraint-add node.labels.env==prod my_weh

7、网络概念说明

https://docs.docker.com/engine/swarm/ingress/

在 Swarm Seryice 中有三个重要的网络概念!

  • Overlay networks 管理 Swarm 中 Docker守护进程间的通信。你可以将服务附加到一个或多个己存在的网络上,使得服务与服overlay务之间能够通信。

  • ingress network是一个特殊的网络,用于服务节点间的负载均衡:启动多个服务,访问的时候随机分配到一个服务器中。当任何 Swarm 节点在发布的端口上接收到请求时,它将该请overlayX求交给一个名为 IPVS 的模块。IPVS 跟踪参与该服务的所有IP地址,选择其中的一个,并通过ingress 网络将请求路由到它。

    初始化或加入 Swarm 集群时会自动创建 ingress 网络,大多数情况下,用户不需要自定义配置。但是 docker 17.05 和更高版本允许你自定义。

  • docker_gwbridge是一种桥接网络,将 overlay 网络(包括 ingress网络)连接到一个单独的Docker 守护进程的物理网络。默认情况下,服务正在运行的每个容器都连接到本地 docker 守护进程主机的 docker_gwbridge 网络。

    docker_gwbridge网络在初始化或加入 Swarm 时自动创建。大多数情况下,用户不需要自定义配置,但是 Docker 允许自定义。

说明

  • docker_gwbridge和ingress是swarm自动(别建的,当用户执行了docker swarm init/connect之后

  • docker_gwbridge是bridge类型的负责本机container和主机直接的连接
    间的路由。

  • ingress负责service在多个主机container之

  • custom-network是用户自己创建的overla网络,通常我们都需要创建自己的network并把service挂在上面ingress网络。

vip(虚拟ip模式)

请添加图片描述

8、DokcerStack

单机:docker run 、docker compose

集群:docker service DockerStack

我们了解了Docker compose,它是用来进行一个完整的应用程序相互依赖的多个容器的编排的,但是缺点是不能在分布式多机器上使用;我们也介绍了Docker swarm,它构建了docker集群,并且可以通过docker service在不同集群节点上运行容器服务,但是缺点是不能同时编排多个服务。
单机模式下,我们可以使用 Docker Compose 来编排多个服务,而 Docker Swarm 只能实现对单个服务 的简单部署。通过 Docker Stack,我们只需对已有的 docker-cmpose.yml 配置文件稍加改造就可以完成 Docker 身群环境下的多服务编排。

但是在实际的生产开发中,我们一个完整的应用需要的服务往往不止一个,通过docker service 命令来部署的话会很麻烦,所以这里要讲一下Docker Stack,它用于向swarm集群部署完整的应用程序堆栈,可以在分布式多机器上同时编排多个有依赖关系的服务。
Stack能够在单个声明文件中定义复杂的多服务应用。还提供了简单的方式来部署应用并管理其完整的生命周期:初始化部署 ->健康检查 ->扩容->更新->回滚,以及其他功能!可以简单地理解iStack是集群下的Compose。

# 单机
docker compose up -d -c wordpress-compose.yaml#集群
docker stack deploy wordpress-compose.yaml
实战

https://gitee.com/landylee007/voting-app?_from=gitee_search

这是一个开源的投票app,包含以下服务

  • 5个应用服务:vote、redisworker、db、result
  • 工具服务:vi、sua、lizer

首先创建一个docker-compose.yml文件,使用docker compose v3语法

docker stack deploy --compose-file docker-stack.yml vote
docker stack rm vote
# 项目中的docker-stack.yml文件,需要稍作修改,添加数据库初始用户信息
#    environment:
#      POSTGRES_USER: "postgres"
#      POSTGRES_PASSWORD: "postgres"
#      POSTGRES_HOST_AUTH_METHOD: "trust"
# 报错yaml: line 18: found character that cannot start any token ,解决:注意yml文件中不识别tab制表符
version: "3"
services:redis:image: redis:alpinenetworks:- frontenddeploy:replicas: 1update_config:parallelism: 2delay: 10srestart_policy:condition: on-failuredb:image: postgres:9.4environment:POSTGRES_USER: "postgres"POSTGRES_PASSWORD: "postgres"POSTGRES_HOST_AUTH_METHOD: "trust"volumes:- db-data:/var/lib/postgresql/datanetworks:- backenddeploy:placement:constraints: [node.role == manager]vote:image: dockersamples/examplevotingapp_vote:beforeports:- 5000:80networks:- frontenddepends_on:- redisdeploy:replicas: 2update_config:parallelism: 2restart_policy:condition: on-failureresult:image: dockersamples/examplevotingapp_result:beforeports:- 5001:80networks:- backenddepends_on:- dbdeploy:replicas: 1update_config:parallelism: 2delay: 10srestart_policy:condition: on-failureworker:image: dockersamples/examplevotingapp_workernetworks:- frontend- backenddepends_on:  - db- redisdeploy:mode: replicatedreplicas: 1labels: [APP=VOTING]restart_policy:condition: on-failuredelay: 10smax_attempts: 3window: 120splacement:constraints: [node.role == manager]visualizer:image: dockersamples/visualizer:stableports:- "8080:8080"stop_grace_period: 1m30svolumes:- "/var/run/docker.sock:/var/run/docker.sock"deploy:placement:constraints: [node.role == manager]networks:frontend:backend:volumes:db-data:

详细的部署流程

这里我们使用集群部署

docker stack deploy --compose-file docker-stack.yml vote

请添加图片描述

部署成功后,通过ip访问

请添加图片描述
请添加图片描述

Docker Stack和 Compose区别
  • Docker stack会忽略了“构建”指令,无法使用stack命令构建新镜像,它是需要镜像是预先已经构建好的。所以docker-compose更适合于开发场景;
  • 它使用Docker API规范来操作容器。所以需要安装Docker-compose,以便与Docker-起DockerCompose是一个Python项目,在内部在您的计算机上使用;
  • Docker Stack功能包含在Docker引擎中。你不需要安装额外的包来使用它,docker stacks 只是swarm mode的一部分。
  • Dockerstack不支持基于第2版写的docker-compose.yml,也就是version版本至少为3。然而Docker Compose对版本为2和3的文件仍然可以处理
  • docker stack把docker compose的所有工作老做完了,因此docker stack将占主导地位。同时,对于大多数用户来说,切换到使用dockerstack既不困难,也不需要太多的开销。如果是Docker新手,或正在选择用于新项目的技术,请使用docker stack.

9、DockerSecret&Config

Docker Secret 是 Docker 容器中存储敏感数据的一种机制。它们用于安全地存储和传输诸如密码、API 密钥、TLS 证书等敏感信息,以供容器应用程序使用。Docker Secret 是 Docker Swarm 和 Docker Compose 中的功能,用于将敏感数据传递给容器,并确保这些数据在容器中的使用是安全可靠的。

Docker Secret 的工作原理是将敏感数据存储在一个受 Docker 本地安全机制保护的地方,并将其传递给容器。在 Swarm 中,Secret 以加密的方式存储在 Swarm 中的 Raft 日志中,并且只有具有适当权限的服务才能访问它们。在 Compose 中,Secret 存储在本地的 Docker 配置目录中,也是以加密的方式存储。

使用 Docker Secret,可以更安全地管理敏感信息,避免将其硬编码到容器镜像中,从而提高了容器化应用程序的安全性和可移植性。

用法

要使用 Docker Secret,您可以按照以下步骤:

  1. 创建 Docker Secret:首先,您需要创建一个 Docker Secret。您可以使用 docker secret create 命令来创建一个新的 Secret。例如:
echo "my_secret_data" | docker secret create my_secret_data -

上述命令将创建一个名为 my_secret_data 的 Secret,并将其值设置为 “my_secret_data”。

  1. 将 Secret 添加到服务中:一旦您创建了 Secret,您可以将其添加到 Docker 服务中。在 Docker Swarm 中,您可以使用 --secret 标志将 Secret 添加到服务中。例如:
docker service create --name myservice --secret my_secret_data my_image

在 Docker Compose 中,您可以在 docker-compose.yml 文件中使用 secrets 关键字指定 Secret。例如:

version: '3.8'services:myservice:image: my_imagesecrets:- my_secret_data
  1. 在容器中使用 Secret:一旦将 Secret 添加到服务中,您可以在容器中使用它。容器可以通过文件或环境变量访问 Secret 的值。

    • 通过文件:在容器内,Secret 会被挂载到文件系统上的某个位置。例如,在 Linux 上,默认路径为 /run/secrets/<secret_name>。您可以在容器中读取此文件来获取 Secret 的值。
    • 通过环境变量:Docker 还会将 Secret 的值以环境变量的形式传递给容器。环境变量的名称将是 Secret 的名称。例如,如果 Secret 名称为 my_secret_data,则环境变量名称将为 MY_SECRET_DATA

总结

到这里dokcer的集群通信的逻辑就完结了,但是Docker Swarm仍旧只是匆匆过客,最终还是需要回到Kuberness上!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/766757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt打开已有工程方法

在Qt中&#xff0c;对于一个已有工程如何进行打开&#xff1f; 1、首先打开Qt Creator 2、点击文件->打开文件或项目&#xff0c;找到对应文件夹下的.pro文件并打开 3、点击配置工程 这样就打开对应的Qt项目了&#xff0c;点击运行即可看到对应的效果 Qt开发涉及界面修饰…

jmeter断言使用方法

断言主流的有两种&#xff1a;响应断言、JSON断言 响应断言 1、http请求添加响应断言 2、三种作用域&#xff1a;第一种既作用主请求又作用子请求、只作用主请求、只作用子请求。我们默认选中间的仅作用主请求即可。 3、测试字段和匹配规则 测试字段一般选择响应文本即可&am…

备战蓝桥杯D33 - 真题 - 松散子序列

题目描述 解题思路 ps&#xff1a;思路是我看了大佬的题解后自己的理解&#xff0c;自己给自己捋清楚思路。 1.设置输入&#xff0c;将字符串输入 2.因为输入的是字符&#xff0c;但要找出字符的最大价值&#xff0c;所以先将字符串转化成对应的数值。 这时候就要用到ord函…

HTTPS协议的工作原理:保护网络通信的安全盾牌

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

阿里云4核16G服务器价格26.52元1个月、149.00元半年,ECS经济型e实例

阿里云4核16G服务器优惠价格26.52元1个月、79.56元3个月、149.00元半年&#xff0c;配置为阿里云服务器ECS经济型e实例ecs.e-c1m4.xlarge&#xff0c;4核16G、按固定带宽 10Mbs、100GB ESSD Entry系统盘&#xff0c;活动链接 aliyunfuwuqi.com/go/aliyun 活动链接打开如下图&a…

【计算机网络】常见面试题汇总

文章目录 1.计算机网络基础1.1网络分层模型/OSI七层模型是什么&#xff1f;1.2TCP/IP四层模型是什么&#xff1f;每一层的作用&#xff1f;1.2.1TCP四层模型&#xff1f;1.2.2为什么网络要分层&#xff1f; 1.2常见网络协议1.2.1应用层常见的协议1.2.2网络层常见的协议 2.HTTP2…

前端学习之css 定位与浮动

定位 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>定位和浮动</title><style>*{/* 将模块紧紧贴着浏览器边框 */margin: 0;}.c{background-color: blueviolet;width: 100px;height: 1…

【Tanshtech】生物膜/细胞膜包裹的纳米颗粒的制备

癌症传统治疗的限制性&#xff0c;如化疗产生的非靶向副作用以及肿瘤可能产生的耐药性&#xff0c;使得医生需要在抗肿瘤活性和患者安全之间取得平衡。纳米医学在解决这一问题上发挥了巨大作用&#xff0c;纳米制剂能够被动或主动靶向到肿瘤部位。而纳米载体也被用于提高药物的…

HTTP(2)

HTTP 通信过程包括从客户端发往服务器端的请求及从服务器端返回客户端的响应。 那么请求和响应是怎样运作的呢 HTTP 报文 用于 HTTP 协议交互的信息被称为 HTTP 报文。 请求端&#xff08;客户端&#xff09;的HTTP 报文叫做请求报文&#xff0c;响应端&#xff08;服务器…

静态路由综合实验

一.实验拓扑图 二.实验要求 1、R6为ISP&#xff0c;接口IP地址均为公有地址&#xff0c;该设备只能配置IP地址&#xff0c;之后不能再对其进行任何配置&#xff1b; 2、R1-R5为局域网&#xff0c;私有IP地址192.168.1.0/24&#xff0c;请合理分配&#xff1b; 3、R1、R2、R…

亚马逊云科技《生成式 AI 精英速成计划》

最近亚马逊云科技推出了「生成式AI精英速成计划」&#xff0c;获取包含&#xff1a;免费学习热门生成式AI课程、技能证书、人力主管的面试辅导、云计算国际认证、免费去往北美参加全球用户大会等&#xff5e; 针对开发者和企业非技术专业人士&#xff0c;了解如何使用大模型平台…

OpenCV学习笔记(十一)——利用Sobel算子计算梯度

Sobel算子是基于一阶导数的离散差分算子&#xff0c;其中Sobel对于像素值的变化是十分敏感的&#xff0c;在进行边缘检测的时候&#xff0c;Sobel算子常用于对周围像素的重要性进行检测。 Sobel算子包括检验水平方向的算子和检测竖直方向的算子 计算机梯度值的操作如下&#x…

Java设计模式 | 抽象工厂模式

抽象工厂模式 工厂方法模式中考虑的是一类产品的生产&#xff0c;如幼儿园只培养小朋友&#xff0c;鞋厂只生产鞋子。这些工厂只生产同种类产品&#xff0c;同种类产品称为同等级产品&#xff0c;即工厂方法模式只考虑生产同等级的产品&#xff0c;但是在现实生活中许多工厂都…

【计算机网络】计算机网络概述

文章目录 一、计算机网络的概念二、 计算机网络的功能1. 数据通信2. 资源共享3. 分布式处理4. 提高可靠性5. 负载均衡 补充&#xff1a; 计算机的发展阶段小结三、计算机网络的组成1. 组成部分2. 工作方式3. 功能组成 四、 计算机网络的分类1. 按分布范围2. 按使用者3. 按交换技…

Docker 【通过Dockerfile构建镜像】【docker容器与镜像的关系】

文章目录 前言一、前期的准备工作二、上手构建一个简单的镜像三、DcokerFile1 指令总览2 指令详情 四、Dockerfile文件规范五、docker运行build时发生了什么?六、调试手段1. 修改镜像打包后&#xff0c;如何验证新内容已更新至镜像 七、Dockerfile优化方案 前言 docker构建镜…

JavaEE-文件操作和IO

我们先来认识狭义上的⽂件(file)。针对硬盘这种持久化存储的I/O设备&#xff0c;当我们想要进⾏数据保存时&#xff0c;往往不是保存成⼀个整体&#xff0c;⽽是独⽴成⼀个个的单位进⾏保存&#xff0c;这个独⽴的单位就被抽象成⽂件的概念&#xff0c;就类似办公桌上的⼀份份真…

stm32平衡车

目录 一.所需材料 二.PID算法&#xff08;简单说明&#xff09; 直立环 速度环 串级PID 三.使用到的外设 1.定时器输出比较-PWM 2.定时器编码器模式 3.编码器读取速度 4.电机驱动函数 5.外部中断 四、小车 调试 一.所需材料 1.陀螺仪MPU6050--读取三轴的加速度…

隐语笔记2 —— 隐私计算开源如何助力数据要素流通

数据生命周期 数据流转链路主要包括&#xff1a;采集、存储、加工、使用、提供、传输 数据要素外循环是构建数据要素市场的核心 数据外循环中的信任焦虑 三个代表性问题&#xff1a; 不可信内部人员不按约定使用用户隐私泄漏 数据权属问题 解决方案&#xff1a;从主体信任…

JDK下载配置

一、JDK的作用 Java开发环境&#xff1a;JDK提供了完整的Java开发环境&#xff0c;包含编译器&#xff08;javac&#xff09;、解释器&#xff08;java&#xff09;、打包工具&#xff08;jar&#xff09;、文档生成工具&#xff08;javadoc&#xff09;等一系列工具&#xff0…

SpringBoot健康监控

文章目录 1-SpringBoot2-监控-健康监控服务2-SpringBoot2-监控-Admin可视化 在Spring Boot中&#xff0c;可以通过Actuator模块实现应用程序的健康监控。Actuator是Spring Boot提供的一个用于监控和管理应用程序的模块&#xff0c;可以轻松地查看应用程序的运行状况、性能指标和…