EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

目录

    • EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测;
2.运行环境为Matlab2023及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1-VMD.m、main2-VMD-TCN-BiGRU-MATT.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
VMD-TCN-BiGRU-MATT模型是一种结合了变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环单元(BiGRU)以及多头注意力机制(MATT)的多变量时间序列预测模型。该模型旨在充分利用各种技术的优势,以提高时间序列预测的准确性和稳定性。

首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,BiGRU网络被引入以处理序列数据中的短期和长期依赖关系。BiGRU是一种具有记忆单元的递归神经网络,能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到BiGRU网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

综上所述,VMD-TCN-BiGRU-MATT模型通过结合VMD、TCN、BiGRU和MATT等多种技术,实现了对多变量时间序列的有效预测。该模型能够充分利用各种技术的优势,提高预测精度和稳定性,对于处理复杂时间序列数据具有重要的应用价值。在实际应用中,可以根据具体的数据和任务需求对该模型进行进一步的优化和调整。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);outputName = layer.Name;for i = 1:numBlocksdilationFactor = 2^(i-1);layers = [convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)layerNormalizationLayerdropoutLayer(dropoutFactor) % spatialDropoutLayer(dropoutFactor)convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/766525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring设计模式-实战篇之模板方法模式

什么是模板方法模式? 模板方法模式用于定义一个算法的框架,并允许子类在不改变该算法结构的情况下重新定义算法中的某些步骤。这种模式提供了一种将算法的通用部分封装在一个模板方法中,而将具体步骤的实现延迟到子类中的方式。 模板方法模式…

【Go】Go语言中的数组与切片

纵使微茫如烟 纵有万般思念 流光总将故人搁浅在断简残篇 不成眠 不等谁来证明 不必狂歌痛饮 唯盼重相见 我如倦鸟归林 🎵 流浪的蛙蛙《从别后》 摘要 Go语言提供了强大的数据结构来处理固定长度的序列和动态长度的序列,分别称为数…

Superset二次开发之 配置Docker

手动安装 安装必要的一些系统工具 在设置仓库之前,需先安裝所需的软件包。yum-utils提供了yum-config-manager,并且device mapper存储驱动程序需要device-mapper-persistent-data和lvm2。 yum install -y yum-utils device-mapper-persistent-data lvm2 设置源仓库 使用阿里云…

爬虫工作量由小到大的思维转变---<第五十一章 Scrapy 深入理解Scrapy爬虫引擎(2)--引擎的工作流程>

前言: 继续上一篇:https://hsnd-91.blog.csdn.net/article/details/136943552 本章主要介绍Scrapy引擎的启动流程、请求处理的生命周期、如何处理下载的内容以及触发Item Pipeline的过程。还讨论了数据处理在爬虫解析函数和Item Pipeline中的作用,并介绍了引擎关闭…

2024年 前端JavaScript Web APIs 第五天 笔记

5.1-BOM和延迟函数setTimeout 5.2-事件循环eventloop 1-》 3 -》2 1-》 3 -》2 5.3-location对象 案例&#xff1a;5秒钟之后自动跳转页面 <body><a href"http://www.itcast.cn">支付成功<span>5</span>秒钟之后跳转到首页</a><sc…

数据库测试案例20240322-binlog_format为row binlog日志分析,主备数据不一致会导致复制出问题

1 测试概述 master-1&#xff0c;master-2表数据test如下&#xff1a; 9:26: [mytest]> select *From test; ---------- | id | name | ---------- | 10 | 123 | ---------- 1 row in set (0.00 sec) 2 在主库将数据删除导致数据不一致 09:26: [mytest]> set sql_…

git的实际应用场景

本文章的场景主要来源于实际工作&#xff0c;用于记载回看&#xff1b;持续更新&#xff0c;最后更新日期&#xff1a;2024-03-23软件&#xff1a;Git BASH、GitK、Git GUI三者配合使用 1、git reset < file > 作用&#xff1a;把文件从暂存区状态重置为工作区状态&…

对象操作篇

文章目录 9.1 dir()9.2 hash()9.3 help()9.4 id()9.5 type() 9.1 dir() dir() 是 Python 中的一个内置函数&#xff0c;用于返回一个对象的所有属性和方法的列表。当dir()不带参数调用时&#xff0c;它会返回当前作用域中的变量、方法和定义的类型列表。如果dir()带有一个参数…

从零开始学HCIA之网络自动化02

1、Python 是一种解释型&#xff08;即不需要编译环节&#xff09;的、面向对象&#xff08;即支持面向对象的风格或代码&#xff09;的、动态数据类型的高级程序设计语言。对于所谓的高级程序设计语言&#xff0c;你可以理解为“同声传译”的过程。 2、Python标准库很庞大&am…

Shut down, sleep, or hibernate your PC 关闭、睡眠或休眠

最近一段时间没有整服务器了~自己开始捉摸18年买的笔记本-x280&#xff0c;除了发现usb type c和thunderbolt 3接口的不一样外&#xff0c;也开始研究这个待机的功能了~找了官方文档&#xff0c;做个简易的翻译&#xff0c;给大家一起看看学习把。 官方文档URL&#xff1a; S…

Docker搭建LNMP环境实战(02):Win10下安装VMware

实战开始&#xff0c;先安装 VMware 虚拟机。话不多说&#xff0c;上手就干&#xff01; 1、基本环境检查 1.1、本机Bios是否支持虚拟化 进入&#xff1a;任务管理器- 性能&#xff0c;查看“虚拟化”是否启用&#xff0c;如果已启用&#xff0c;则满足要求&#xff0c;如果未…

【Swagger】接口文档生成

文章目录 一、前后端分离开发流程二、YApi导入接口文档三、Swagger3.1 介绍3.2 使用步骤3.2.1 导入 knife4j 的maven依赖3.2.2 在配置类中加入 knife4j 相关配置3.2.3 配置类中设置静态资源映射3.2.4 访问测试 3.3 常用注解3.4 全局参数设置 四、YApi 与 Swagger 一、前后端分离…

Day18:LeedCode 513.找树左下角的值 112. 路径总和 106.从中序与后序遍历序列构造二叉树

513. 找树左下角的值 给定一个二叉树的 根节点 root&#xff0c;请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 思路:出该二叉树的 最底层 最左边 节点的值找出深度最大的第一个结点(左结点先遍历) 方法一…

一个单生产-多消费模式下无锁方案(ygluu/卢益贵)

一个单生产-多消费模式下无锁方案 ygluu/卢益贵 关键词&#xff1a;生产者-消费者模型、无锁队列、golang、RWMutex 本文介绍一个“单生产(低频)-多消费”模式下的无锁哈希类方案&#xff0c;这个方案的性能优于golang的RWMutex&#xff0c;因为它永远不会因为“写”而导致与…

i2c-tools基本用法

一. 前言 前面调试一个I2C设备&#xff0c;用到了i2c-tools&#xff0c;觉得是一个调试I2C不错的工具&#xff0c;本文对i2c-tools的基本用法做一些介绍。i2c-tools是一些控制2C接口工具的集合&#xff0c;其中包括i2cdetect&#xff0c;i2cdump&#xff0c;i2cget&#xff0c;…

亚稳态及其解决办法

异步电路 亚稳态 亚稳态亚稳态的产生原因什么是同步异步信号怎么消除亚稳态 亚稳态 在数字电路中&#xff0c;每一位数据不是1&#xff08;高电平&#xff09;就是0&#xff08;低电平&#xff09;。当然对于具体的电路来说&#xff0c;并非1&#xff08;高电平&#xff09;就是…

ECMAScript与JavaScript辨析:标准与实现之辨

ECMAScript与JavaScript辨析&#xff1a;标准与实现之辨 目录 ECMAScript与JavaScript辨析&#xff1a;标准与实现之辨 一、引言 二、ECMAScript&#xff1a;脚本编程语言的标准蓝图 三、JavaScript&#xff1a;基于ECMAScript的实现 四、ECMAScript与JavaScript的交互关系及…

Notepad++ 如何调整显示字面大小

在 Notepad 上&#xff0c;可以使用 ctrl 加上鼠标的左键来滚动来进行调整。 如何恢复默 可以使用 Ctrl 加数字键盘上的 / 键 来恢复默认设置。 当然也可以通过菜单栏上 view 菜单下的 Zoom 选项。 上面的界面中可以看到我们的在 Notepad 中使用的选项。 Notepad 如何调整显示…

redis 如何保证数据同步(数据变化时)

redis 如何保证数据同步&#xff08;数据变化时&#xff09; 思路 1.新增、删除和修改都先对数据库进行操作&#xff0c;这时数据库的数据将域缓存中数据不同。 2.数据库进行变动后&#xff0c;返回结果&#xff0c;根据返回的结果判断数据库操作是否成功。 3.如果数据库操…

C++和Python计算金融数学方程算法模型

要点 C代码蒙特卡罗模拟金融产品估值&#xff0c;开发C并行计算模拟库。 算法伴随微分计算图及C代码实现释义&#xff1a;C应用经典的复合模式构建有向无环图&#xff0c;遍历有向无环图节点C实现&#xff0c;C使用懒惰评估计算次序&#xff0c;遍历代码实现&#xff0c;C代码…