计算机视觉之三维重建(2)---摄像机标定

文章目录

  • 一、回顾线代
    • 1.1 线性方程组的解
    • 1.2 齐次线性方程组的解
  • 二、透镜摄像机的标定
    • 2.1 标定过程
    • 2.2 提取摄像机参数
    • 2.3 参数总结
  • 三、径向畸变的摄像机标定
    • 3.1 建模
    • 3.2 求解
  • 四、变换
    • 4.1 2D平面上的欧式变换
    • 4.2 2D平面上的相似变换和仿射变换
    • 4.3 2D平面上的透射变换
    • 4.4 3D平面上的欧式变换
    • 4.5 3D平面上的仿射变换
    • 4.6 3D平面上的透射变换


一、回顾线代

1.1 线性方程组的解

 对于线性方程组 A x = y Ax=y Ax=y,当矩阵 A A A 列满秩情况时:(1) 行数(方程数)小于未知数个数,欠定方程组,多解。(2) 行数(方程数)等于未知数个数,唯一解。(3) 行数(方程数)大于未知数个数,超定方程组,无解。

在这里插入图片描述

1.2 齐次线性方程组的解

  对于线性方程组 A x = 0 Ax=0 Ax=0,当矩阵 A A A 列满秩情况时:(1) 行数(方程数)小于未知数个数,欠定方程组,多解。(2) 行数(方程数)等于未知数个数,只有零解。(3) 行数(方程数)大于未知数个数,超定方程组,除零解外无解。

在这里插入图片描述

二、透镜摄像机的标定

2.1 标定过程

 1. 摄像机标定,即求解摄像机的内、外参数矩阵。摄像机的内、外参数矩阵描述了三维世界到二维像素的映射关系。

 2. 首先对于摄像机标定问题,约定像素坐标平面的点用 p p p 表示(不再用 P ′ P' P 表示),世界坐标系的点用 P P P 表示(不再用 P w P_w Pw 表示)。

在这里插入图片描述

 3. 当我们已知多个位置的对应关系时,那我们的目标就是根据这些点对应关系求出摄像机的内、外参数。

在这里插入图片描述

 4. 投影矩阵 M M M 3 × 4 3×4 3×4 的矩阵,我们写成如下的形式,则 m 1 , m 2 , m 3 m_1,m_2,m_3 m1,m2,m3 都是 1 × 4 1×4 1×4 的矩阵。
在这里插入图片描述

 那么像素坐标系的一个点 p i p_i pi 就可以定义为:

在这里插入图片描述

 4. 下面公式是将任意一个像素坐标系上的点,通过等式变换得到一个齐次线性方程,而多个点对又可以构成齐次线性方程组。
 摄像机投影矩阵有11个自由度(未知量)。由于每一个二维点在像素坐标系下为两个值,那么对于11个未知量来说最少需要12个方程来进行求解(由于像素坐标系下点的两个横纵坐标成对出现),那么就需要六对点来对应,但实际应用中一定是使用多于六对点来对应,通过最小二乘法消掉一部分错误的噪声点对,可以获得更好的鲁棒性效果。
 大多数情况下,生成的齐次线性方程数是远大于11的,方程数大于未知参数,齐次线性方程组为一个超定方程组,所以可以用齐次线性方程组的最小二乘法求解方法来求解同样的问题。

在这里插入图片描述

在这里插入图片描述

2.2 提取摄像机参数

 1. 将下面的投影矩阵展开,左一列为 3 × 3 3×3 3×3 的矩阵,右一列为 3 × 1 3×1 3×1 的向量,合起来投影矩阵为一个 3 × 4 3×4 3×4 的矩阵,由于通过齐次线性方程组的最小二乘法求解内外参数,从而导致真正的投影矩阵和求的投影矩阵之间存在一个比例系数 ρ ρ ρ 的关系,所以,括号里的为真实的投影矩阵(未知), M M M 为求解得到的投影矩阵。

在这里插入图片描述

 2. 我们把求解得到的投影矩阵 M M M 写成 [ A , b ] [A,b] [A,b] A A A 就是前三列, b b b 是最后一列,所以 ρ A = K R ρA=KR ρA=KR
A A A b b b 都是已知的。

在这里插入图片描述

 3. 旋转矩阵中每一行的模都是1,所以可以得到以下的结论。利用 ρ a 1 T ⋅ ρ a 3 T ρ{a_1}^T · ρ{a_3}^T ρa1Tρa3T ρ a 2 T ⋅ ρ a 3 T ρ{a_2}^T · ρ{a_3}^T ρa2Tρa3T 可以求出 u 0 u_0 u0 v 0 v_0 v0:点乘。

在这里插入图片描述

 4. 利用 ρ a 1 T × ρ a 3 T ρ{a_1}^T × ρ{a_3}^T ρa1T×ρa3T ρ a 2 T × ρ a 3 T ρ{a_2}^T × ρ{a_3}^T ρa2T×ρa3T 可以求出下面图中的式子。:叉乘。

在这里插入图片描述

 5. 由上面的式子可以得到 α α α β β β 的表达式。再将 ρ 2 ( a 1 × a 3 ) ρ^2(a_1 × a_3) ρ2(a1×a3) ρ 2 ( a 2 × a 3 ) ρ^2(a_2 × a_3) ρ2(a2×a3) 进行点乘,然后带入 α α α β β β 的表达式可以得到关于 θ θ θ 的表达式。

在这里插入图片描述

在这里插入图片描述

 (1) 此时我们也可以令 θ = 90 ° θ=90° θ=90° c o s θ cosθ cosθ 为0,满足零倾斜透视情况,那么分子 ( a 1 × a 3 ) ⋅ ( a 2 × a 3 ) (a_1 × a_3) · (a_2 × a_3) (a1×a3)(a2×a3) 为0,满足Faugeras定理中的第二条零倾斜透视矩阵性质。

 (2) 我们令 α = β α=β α=β 那么一定满足 α α α 的平方等于 β β β 的平方,即 ( a 1 × a 3 ) ⋅ ( a 1 × a 3 ) = ( a 2 × a 3 ) ⋅ ( a 2 × a 3 ) (a_1 × a_3) · (a_1 × a_3)= (a_2 × a_3) · (a_2 × a_3) (a1×a3)(a1×a3)=(a2×a3)(a2×a3),且令 θ = 90 ° θ=90° θ=90° 满足零倾斜透视情况,此时满足Faugeras定理中的第三条零倾斜且宽高比为1的透视矩阵性质。

 6. r i r_i ri 是个方向向量,不用管前面的系数。所以利用 ρ a 2 T × ρ a 3 T ρ{a_2}^T × ρ{a_3}^T ρa2T×ρa3T 可以求出 r 1 r_1 r1 r 3 r_3 r3 可以直接得出,最后 r 2 = r 1 × r 3 r_2=r_1 × r_3 r2=r1×r3

在这里插入图片描述

 7. 利用公式 ρ b = K T ρb=KT ρb=KT 可以求出 T T T

在这里插入图片描述

上面求解推导过程中有几个注意点:
(1) 列向量模的求法:
在这里插入图片描述
(2) 向量的点乘(内积)
在这里插入图片描述
(3) 向量的叉乘(外积)
两个向量叉乘的运算结果是一个向量而不是一个标量。并且两个向量叉乘得到的向量与这两个向量组成的坐标平面垂直。
在这里插入图片描述

2.3 参数总结

 1. 各个参数的最终公式如下所示:

在这里插入图片描述

 2. 我们要注意取点时不要取同一平面的点。

在这里插入图片描述

三、径向畸变的摄像机标定

3.1 建模

 1. 径向畸变会导致图像的放大率随着距离光轴距离的增加而减小,换句话说,距离摄像机中心近的影响小,距离摄像机中心远的畸变影响大。

 2. 定义一个 λ λ λ,满足和摄像机中心 d d d 之间的多项式关系,对原来像素坐标系和世界坐标系的映射关系间添加一个 S λ S_λ Sλ 矩阵。下图中 d 2 d^2 d2 表示点距离摄像机坐标系中心的距离。

在这里插入图片描述

 3. 对于径向畸变问题不再是一个齐次线性方程组的问题,而是一个非线性的问题,由于 λ λ λ u u u v v v 之间存在了映射关系,导致 λ λ λ 不再是一个简单的参数,也无法再转换为齐次方程组的 A x = 0 Ax=0 Ax=0 的关系,只能建立成 f ( x ) = 0 f(x)=0 f(x)=0 的非线性关系。

在这里插入图片描述

3.2 求解

在这里插入图片描述

四、变换

4.1 2D平面上的欧式变换

 1. 欧式变换,也称为欧几里得变换或刚性变换,是一种较为基本的变换方式。在欧式变换中,同一个向量在各个坐标系下的长度和角度都不会发生变化,它只涉及物体的旋转和平移运动,不改变物体的形状和大小。这种变换方式在视觉SLAM(同步定位与地图构建)中具有重要的应用,用于描述相机等刚体的运动定位和构图过程。

 2. 欧式变换具有长度、夹角和体积不变性,即在变换过程中,物体的长度、各部分的夹角以及体积都会保持不变。

 3. 等距变换包括欧式变换( σ = 1 σ=1 σ=1)和镜像变换( σ = − 1 σ=-1 σ=1)。

在这里插入图片描述

4.2 2D平面上的相似变换和仿射变换

 1. 相似变换就在欧式变换基础上添加了一个比例因子 s s s,使得大小会有所变化,但形状不变,保持相似性。

在这里插入图片描述

 2. 仿射变换中形状和大小已经完全变化,但是不同形状之间平行性,面积比值,平行线段长度比值仍然不变。

在这里插入图片描述

在这里插入图片描述

4.3 2D平面上的透射变换

 透射变换不保持平行性,只能保持原来是个点现在还是个点,原来是个线现在还是个线,原来在一个平面现在还在一个平面。
在这里插入图片描述

在这里插入图片描述

4.4 3D平面上的欧式变换

:下图中的 s s s 为缩放因子,欧式变换 s = 1 s=1 s=1,相似变换 s s s 就不定了。

在这里插入图片描述

在这里插入图片描述

4.5 3D平面上的仿射变换

在这里插入图片描述

在这里插入图片描述

4.6 3D平面上的透射变换

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/766502.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 VMWare 安装 Android-x86 系统(小白版)

文章目录 VMWare 介绍Android 系统介绍概述最终效果前置步骤开始安装 VMWare 介绍 VMware Workstation是VMware公司开发的一款桌面虚拟化软件。它允许用户在一台物理计算机上同时运行多个操作系统,每个操作系统都在自己的虚拟机中运行。这使得用户可以在同一台计算…

实例:NX二次开发使用链表进行拉伸功能(链表相关功能练习)

一、概述 在进行批量操作时经常会利用链表进行存放相应特征的TAG值,以便后续操作,最常见的就是拉伸功能。这里我们以拉伸功能为例子进行说明。 二、常用链表相关函数 UF_MODL_create_list 创建一个链表,并返回链表的头指针。…

认识String类

认识String类 前面我们学习了类和对象,这一小节咱们来谈String类 目录 认识String类前言一、String类的创建方式二、String引用类型的特点及方法1.存储内容2.String对象的比较3.字符串查找在这里插入图片描述4.转换(一)数字转为为字符串&…

阿里云原生:如何熟悉一个系统

原文地址:https://mp.weixin.qq.com/s/J8eK-qRMkmHEQZ_dVts9aQ?poc_tokenHMA-_mWjfcDmGVW6hXX1xEDDvuJPE3pL9-8uSlyY 导读:本文总结了熟悉系统主要分三部分:业务学习、技术学习、实战。每部分会梳理一些在学习过程中需要解答的问题,这些问题…

集成学习 | 集成学习思想:Stacking思想

目录 一. Stacking 思想 一. Stacking 思想 Stacking(或stacked generalization),是指训练一个模型用于组合(combine)其他各个模型 Stacking有两层第一层是不同的基学习器(classifiers/regressors)第二层是用于组合基学习器的元学习&#xf…

Reactor Netty

在springframework 里面,我们只有connection id。但是在底层的reactor netty,我们除了connection id还有local address and remote address HTTP/1 HTTP/2

Qt creator构建DLL库

文章目录 一、构建DLL库二、隐式调用DLL库 一、构建DLL库 Qt creator创建DLL项目。 实现功能函数。 运行代码,debug目录下会有.dll和.lib文件。 二、隐式调用DLL库 QT新建控制台项目。将.lib文件和与之关联的头文件赋值到项目文件夹。 3. 添加头文件和外部依赖库…

GuLi商城-商品服务-API-三级分类-网关统一配置跨域

参考文档: https://tangzhi.blog.csdn.net/article/details/126754515 https://github.com/OYCodeSite/gulimall-learning/blob/master/docs/%E8%B0%B7%E7%B2%92%E5%95%86%E5%9F%8E%E2%80%94%E5%88%86%E5%B8%83%E5%BC%8F%E5%9F%BA%E7%A1%80.md 谷粒商城-day04-完…

[数据结构初阶]二叉树

各位读者老爷好,鼠鼠我现在浅浅介绍一些关于二叉树的知识点,在各位老爷茶余饭后的闲暇时光不妨看看,鼠鼠很希望得到各位老爷的指正捏! 开始介绍之前,给各位老爷看一张风景照,有读者老爷知道在哪里吗&#x…

003- AutoCoder 使用Web版大模型,性感的Human As Model 模式

这是下面这篇文章的继续。 002- 用 AutoCoder 添加和修改代码 前面我们提到,如何解决你没有API版大模型,或者你的API版大模型太弱,而你只有Web版本的诸如 Kimi/GPT4 的情况下,改如何让AutoCoder帮助你完成编程? 我们有…

Excel数字乱码怎么回事 Excel数字乱码怎么调回来

在日常工作中,Excel是我们最常使用的数据处理软件之一,它强大的功能使得数据处理变得既简单又高效。然而,用户在使用Excel时偶尔会遇到数字显示为乱码的问题,这不仅影响了数据的阅读,也大大降低了工作效率。那么&#…

会员中心微服务

文章目录 1.环境配置1.创建会员中心模块2.检查父子模块的pom.xml1.父模块注意:如果父模块中的依赖显示not found,原因是子模块并没有引用,不用在意 2.子模块 3.pom.xml 引入相关依赖(别忘记刷新maven)4.application.ym…

【Node.js】全局变量和全局 API

node 环境中没有 dom 和 bom ,此外 es 基本上都是可以正常使用的。 如果一定要使用 dom 和bom,可以借助第三方库 jsdom 帮助我们实现操作。npm i jsdom 实例: const fs require(node:fs) const {JSDOM} require(jsdom)const dom new JS…

scrapy爬虫框架

scrapy爬虫框架 一、scrapy的概念作用和工作流程1、scrapy的概念2、scrapy框架的作用3、scrapy的工作流程(重点)3.1 回顾之前的爬虫流程3.2 改写上述流程3.3 scrapy的流程3.4 scrapy的三个内置对象3.5 scrapy中每个模块的具体作用 二、scrapy的入门使用1…

Spring Boot1

SpringBoot概述 Spring Boot是Spring提供的一个子项目,用于快速构建Spring应用程序 SpringBoot特性 起步依赖 本质上就是一个Maven坐标,整合了完成一个功能所需要的所有坐标 自动配置 遵循约定大于配置的原则,再boot程序启动后&#xff0…

学习Python的第一天(下载Python环境和工具Pycharm)

下载工具 PyCharm Community Edition 2023.3.4 下载环境 Python3.10.4 目录 1.环境Python下载 1.1 Python环境变量下载网址: 1.2 下载步骤 2.工具Pycharm下载 2.1 pycharm下载网址 2.2 pycharm下载步骤 1.环境Python下载 1.1 Python环境变量下载网址: Python Releas…

C# WPF编程-控件

C# WPF编程-控件 概述WPF控件类别包括以下控件:背景画刷和前景画刷字体文本装饰和排版字体继承字体替换字体嵌入文本格式化模式鼠标光标 内容控件Label(标签)Button(按钮) 概述 在WPF领域,控件通常被描述为…

java常用编程算法——方法递归概述及猴子吃桃案例

前言: 接触到了递归算法,整理下笔记。打好基础,daydayup! 方法递归 方法调用自身的形式称为方法递归,是编程时常用的一种算法 递归的形式 递归有两种情况:1,直接递归;2,间接递归&…

阿里CICD流水线Docker部署,将阿里镜像私仓中的镜像部署到服务器中

文章目录 阿里CICD流水线Docker部署,将阿里镜像私仓中的镜像部署到服务器中一、CICD流水线的初步使用可以看我之前的两篇文章二、添加部署任务,进行Docker部署,创建一个阿里的试用主机1、选择主机部署,并添加服务主机2、创建免费体…

dash 初体验(拔草)

Dash简介 Dash 是一个高效简洁的 Python 框架,建立在 Flask、Poltly.js 以及 React.js 的基础上,设计之初是为了帮助前端知识匮乏的数据分析人员,以纯 Python 编程的方式快速开发出交互式的数据可视化 web 应用。 搭建环境 在学习 Dash 的…