1.目标
将数据集图像通过预处理方法调整为统一大小尺寸,以便于后续模型提取特征。
2.常见的图像数据预处理方法
2.1图像尺度变换
1.图像缩放(使用OpenCV库):
import cv2def resize_image(image, width, height):resized_image = cv2.resize(image, (width, height))return resized_image# 调整图像大小为300x300
resized_image = resize_image(image, 300, 300)
2.图像裁剪:
随机裁剪(使用PIL库):
from PIL import Image
import numpy as npdef random_crop(image, crop_size):image = np.array(image)height, width = image.shape[:2]x = np.random.randint(0, width - crop_size[0] + 1)y = np.random.randint(0, height - crop_size[1] + 1)cropped_image = image[y:y + crop_size[1], x:x + crop_size[0]]return Image.fromarray(cropped_image)# 随机裁剪图像为200x200
cropped_image = random_crop(image, (200, 200))
中心裁剪(使用PIL库):
from PIL import Imagedef center_crop(image, crop_size):width, height = image.sizeleft = (width - crop_size[0]) // 2top = (height - crop_size[1]) // 2right = left + crop_size[0]bottom = top + crop_size[1]cropped_image = image.crop((left, top, right, bottom))return cropped_image# 中心裁剪图像为200x200
cropped_image = center_crop(image, (200, 200))
3.图像翻转(使用OpenCV库):
水平翻转:
import cv2def horizontal_flip(image):flipped_image = cv2.flip(image, 1)return flipped_image# 水平翻转图像
flipped_image = horizontal_flip(image)
垂直翻转:
import cv2def vertical_flip(image):flipped_image = cv2.flip(image, 0)return flipped_image# 垂直翻转图像
flipped_image = vertical_flip(image)
4.图像旋转(使用PIL库,最近邻插值):
from PIL import Imagedef rotate_image(image, angle):rotated_image = image.rotate(angle, resample=Image.NEAREST)return rotated_image# 将图像逆时针旋转90度
rotated_image = rotate_image(image, -90)
5.图像平移(使用OpenCV库):
import cv2
import numpy as npdef translate_image(image, shift_x, shift_y):rows, cols = image.shape[:2]M = np.float32([[1, 0, shift_x], [0, 1, shift_y]])translated_image = cv2.warpAffine(image, M, (cols, rows))return translated_image# 将图像水平平移10个像素,垂直平移20个像素
translated_image = translate_image(image, 10, 20)
灰度化(使用OpenCV库):
import cv2def convert_to_grayscale(image):gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)return gray_image# 将彩色图像转换为灰度图像
gray_image = convert_to_grayscale(image)
图像增强(使用PIL库):
from PIL import ImageEnhancedef enhance_image(image, factor):enhancer = ImageEnhance.Contrast(image)enhanced_image = enhancer.enhance(factor)return enhanced_image# 增强图像对比度为1.5倍
enhanced_image = enhance_image(image, 1.5)
- 数据增强(使用Keras库的ImageDataGenerator):
from keras.preprocessing.image import ImageDataGenerator# 创建一个ImageDataGenerator对象来进行数据增强 datagen = ImageDataGenerator(rotation_range=20, # 随机旋转图像的角度范围width_shift_range=0.1, # 随机水平平移图像的比例height_shift_range=0.1, # 随机垂直平移图像的比例shear_range=0.2, # 随机剪切变换的强度zoom_range=0.2, # 随机缩放图像的范围horizontal_flip=True, # 随机水平翻转图像fill_mode='nearest' # 填充图像的方法 )# 使用数据增强生成批量的图像数据 augmented_data = datagen.flow(x_train, y_train, batch_size=32)