34 | 到底可不可以使用join?

在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类:

1. 我们 DBA 不让使用 join,使用 join 有什么问题呢?

2. 如果有两个大小不同的表做 join,应该用哪个表做驱动表呢?

今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题。

为了便于量化分析,我还是创建两个表 t1 和 t2 来和你说明。

CREATE TABLE `t2` (
  `id` int(11) NOT NULL,
  `a` int(11) DEFAULT NULL,
  `b` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `a` (`a`)
) ENGINE=InnoDB;

drop procedure idata;
delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=1000)do
    insert into t2 values(i, i, i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();

create table t1 like t2;
insert into t1 (select * from t2 where id<=100)

可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据。

Index Nested-Loop Join

我们来看一下这个语句:

select * from t1 straight_join t2 on (t1.a=t2.a); 

 如果直接使用 join 语句,MySQL 优化器可能会选择表 t1 或 t2 作为驱动表,这样会影响我们分析 SQL 语句的执行过程。所以,为了便于分析执行过程中的性能问题,我改用 straight_join 让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。在这个语句里,t1 是驱动表,t2 是被驱动表。

现在,我们来看一下这条语句的 explain 结果。

                                图 1 使用索引字段 join 的 explain 结果 

可以看到,在这条语句里,被驱动表 t2 的字段 a 上有索引,join 过程用上了这个索引,因此这个语句的执行流程是这样的:

1. 从表 t1 中读入一行数据 R;

2. 从数据行 R 中,取出 a 字段到表 t2 里去查找;

3. 取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分;

4. 重复执行步骤 1 到 3,直到表 t1 的末尾循环结束。

这个过程是先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。

它对应的流程图如下所示:

                                        图 2 Index Nested-Loop Join 算法的执行流程 

在这个流程里:

1. 对驱动表 t1 做了全表扫描,这个过程需要扫描 100 行;

2. 而对于每一行 R,根据 a 字段去表 t2 查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描 100 行;

3. 所以,整个执行流程,总扫描行数是 200。

现在我们知道了这个过程,再试着回答一下文章开头的两个问题。

先看第一个问题:能不能使用 join?

假设不使用 join,那我们就只能用单表查询。我们看看上面这条语句的需求,用单表查询怎么实现。

1. 执行select * from t1,查出表 t1 的所有数据,这里有 100 行;

2. 循环遍历这 100 行数据:

  • 从每一行 R 取出字段 a 的值 $R.a;
  • 执行select * from t2 where a=$R.a;
  • 把返回的结果和 R 构成结果集的一行。

可以看到,在这个查询过程,也是扫描了 200 行,但是总共执行了 101 条语句,比直接 join 多了 100 次交互。除此之外,客户端还要自己拼接 SQL 语句和结果。

显然,这么做还不如直接 join 好。

我们再来看看第二个问题:怎么选择驱动表?

在这个 join 语句执行过程中,驱动表是走全表扫描,而被驱动表是走树搜索。

假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2*log2M。

假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。

因此整个执行过程,近似复杂度是 N + N*2*log2M。

显然,N 对扫描行数的影响更大,因此应该让小表来做驱动表。

如果你没觉得这个影响有那么“显然”, 可以这么理解:N 扩大 1000 倍的话,扫描行数就会扩大 1000 倍;而 M 扩大 1000 倍,扫描行数扩大不到 10 倍。

到这里小结一下,通过上面的分析我们得到了两个结论:

1. 使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好;

2. 如果使用 join 语句的话,需要让小表做驱动表。

但是,你需要注意,这个结论的前提是“可以使用被驱动表的索引”。

接下来,我们再看看被驱动表用不上索引的情况。

Simple Nested-Loop Join

现在,我们把 SQL 语句改成这样:

select * from t1 straight_join t2 on (t1.a=t2.b);

 由于表 t2 的字段 b 上没有索引,因此再用图 2 的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描。

你可以先设想一下这个问题,继续使用图 2 的算法,是不是可以得到正确的结果呢?如果只看结果的话,这个算法是正确的,而且这个算法也有一个名字,叫做“Simple Nested-Loop Join”。

但是,这样算来,这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行。

这还只是两个小表,如果 t1 和 t2 都是 10 万行的表(当然了,这也还是属于小表的范围),就要扫描 100 亿行,这个算法看上去太“笨重”了。

当然,MySQL 也没有使用这个 Simple Nested-Loop Join 算法,而是使用了另一个叫作“Block Nested-Loop Join”的算法,简称 BNL。

Block Nested-Loop Join

这时候,被驱动表上没有可用的索引,算法的流程是这样的:

1. 把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;

2. 扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。

这个过程的流程图如下:

                                        图 3 Block Nested-Loop Join 算法的执行流程

对应地,这条 SQL 语句的 explain 结果如下所示:

                                           图 4 不使用索引字段 join 的 explain 结果 

可以看到,在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:100*1000=10 万次。

前面我们说过,如果使用 Simple Nested-Loop Join 算法进行查询,扫描行数也是 10 万行。因此,从时间复杂度上来说,这两个算法是一样的。但是,Block Nested-Loop Join 算法的这 10 万次判断是内存操作,速度上会快很多,性能也更好。

接下来,我们来看一下,在这种情况下,应该选择哪个表做驱动表。

假设小表的行数是 N,大表的行数是 M,那么在这个算法里:

1. 两个表都做一次全表扫描,所以总的扫描行数是 M+N;

2. 内存中的判断次数是 M*N。

可以看到,调换这两个算式中的 M 和 N 没差别,因此这时候选择大表还是小表做驱动表,执行耗时是一样的。

然后,你可能马上就会问了,这个例子里表 t1 才 100 行,要是表 t1 是一个大表,join_buffer 放不下怎么办呢?

join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t1 的所有数据话,策略很简单,就是分段放。我把 join_buffer_size 改成 1200,再执行:

select * from t1 straight_join t2 on (t1.a=t2.b);

 执行过程就变成了:

1. 扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步;

2. 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;

3. 清空 join_buffer;

4. 继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步。

执行流程图也就变成这样:

                                        图 5 Block Nested-Loop Join -- 两段 

图中的步骤 4 和 5,表示清空 join_buffer 再复用。

这个流程才体现出了这个算法名字中“Block”的由来,表示“分块去 join”。

可以看到,这时候由于表 t1 被分成了两次放入 join_buffer 中,导致表 t2 会被扫描两次。虽然分成两次放入 join_buffer,但是判断等值条件的次数还是不变的,依然是 (88+12)*1000=10 万次。

我们再来看下,在这种情况下驱动表的选择问题。

假设,驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。

注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λ*N,显然λ的取值范围是 (0,1)。

所以,在这个算法的执行过程中:

1. 扫描行数是 N+λ*N*M;

2. 内存判断 N*M 次。

显然,内存判断次数是不受选择哪个表作为驱动表影响的。而考虑到扫描行数,在 M 和 N 大小确定的情况下,N 小一些,整个算式的结果会更小。

所以结论是,应该让小表当驱动表。

当然,你会发现,在 N+λ*N*M 这个式子里,λ才是影响扫描行数的关键因素,这个值越小越好。

刚刚我们说了 N 越大,分段数 K 越大。那么,N 固定的时候,什么参数会影响 K 的大小呢?(也就是λ的大小)答案是 join_buffer_size。join_buffer_size 越大,一次可以放入的行越多,分成的段数也就越少,对被驱动表的全表扫描次数就越少。

这就是为什么,你可能会看到一些建议告诉你,如果你的 join 语句很慢,就把 join_buffer_size 改大。

理解了 MySQL 执行 join 的两种算法,现在我们再来试着回答文章开头的两个问题。

第一个问题:能不能使用 join 语句?

1. 如果可以使用 Index Nested-Loop Join 算法,也就是说可以用上被驱动表上的索引,其实是没问题的;

2. 如果使用 Block Nested-Loop Join 算法,扫描行数就会过多。尤其是在大表上的 join 操作,这样可能要扫描被驱动表很多次,会占用大量的系统资源。所以这种 join 尽量不要用。

所以你在判断要不要使用 join 语句时,就是看 explain 结果里面,Extra 字段里面有没有出现“Block Nested Loop”字样。

第二个问题是:如果要使用 join,应该选择大表做驱动表还是选择小表做驱动表?

1. 如果是 Index Nested-Loop Join 算法,应该选择小表做驱动表;

2. 如果是 Block Nested-Loop Join 算法:

  • 在 join_buffer_size 足够大的时候,是一样的;
  • 在 join_buffer_size 不够大的时候(这种情况更常见),应该选择小表做驱动表。

所以,这个问题的结论就是,总是应该使用小表做驱动表。

当然了,这里我需要说明下,什么叫作“小表”。

我们前面的例子是没有加条件的。如果我在语句的 where 条件加上 t2.id<=50 这个限定条件,再来看下这两条语句:

select * from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=50;
select * from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=50;

注意,为了让两条语句的被驱动表都用不上索引,所以 join 字段都使用了没有索引的字段 b。

但如果是用第二个语句的话,join_buffer 只需要放入 t2 的前 50 行,显然是更好的。所以这里,“t2 的前 50 行”是那个相对小的表,也就是“小表”。

我们再来看另外一组例子:

select t1.b,t2.* from  t1  straight_join t2 on (t1.b=t2.b) where t2.id<=100;
select t1.b,t2.* from  t2  straight_join t1 on (t1.b=t2.b) where t2.id<=100;

 这个例子里,表 t1 和 t2 都是只有 100 行参加 join。但是,这两条语句每次查询放入 join_buffer 中的数据是不一样的:

  • 表 t1 只查字段 b,因此如果把 t1 放到 join_buffer 中,则 join_buffer 中只需要放入 b 的值;
  • 表 t2 需要查所有的字段,因此如果把表 t2 放到 join_buffer 中的话,就需要放入三个字段 id、a 和 b。

这里,我们应该选择表 t1 作为驱动表。也就是说在这个例子里,“只需要一列参与 join 的表 t1”是那个相对小的表。

所以,更准确地说,在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。

 小结

今天,我和你介绍了 MySQL 执行 join 语句的两种可能算法,这两种算法是由能否使用被驱动表的索引决定的。而能否用上被驱动表的索引,对 join 语句的性能影响很大。

通过对 Index Nested-Loop Join 和 Block Nested-Loop Join 两个算法执行过程的分析,我们也得到了文章开头两个问题的答案:

1. 如果可以使用被驱动表的索引,join 语句还是有其优势的;

2. 不能使用被驱动表的索引,只能使用 Block Nested-Loop Join 算法,这样的语句就尽量不要使用;

3. 在使用 join 的时候,应该让小表做驱动表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/764497.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法刷题 | 二叉树 02】3.21 二叉树的层序遍历01(5题:二叉树的层序遍历、层序遍历||、右视图、层平均值,以及N叉树的层序遍历)

文章目录 5.二叉树的层序遍历5.1 102_二叉树的层序遍历5.1.1问题5.1.2解法&#xff1a;队列 5.2 107_二叉树的层序遍历||5.2.1问题5.2.2解法&#xff1a;队列 5.3 199_二叉树的右视图5.3.1问题5.3.2解决&#xff1a;队列 5.4 637_二叉树的层平均值5.4.1问题5.4.2解决&#xff1…

.NET Core 服务实现监控可观测性最佳实践

前言 本次实践主要是介绍 .Net Core 服务通过无侵入的方式接入观测云进行全面的可观测。 环境信息 系统环境&#xff1a;Kubernetes编程语言&#xff1a;.NET Core ≥ 2.1日志框架&#xff1a;Serilog探针类型&#xff1a;ddtrace 接入方案 准备工作 DataKit 部署 DataK…

4核16G服务器租用优惠价格,26.52元1个月,半年149元

阿里云4核16G服务器优惠价格26.52元1个月、79.56元3个月、149.00元半年&#xff0c;配置为阿里云服务器ECS经济型e实例ecs.e-c1m4.xlarge&#xff0c;4核16G、按固定带宽 10Mbs、100GB ESSD Entry系统盘&#xff0c;活动链接 aliyunfuwuqi.com/go/aliyun 活动链接打开如下图&a…

ZHUTI主提2024夏季系列 —「逐·行」

ZHUTI主提全新发布2024夏季「逐行」系列&#xff0c;聚焦当下人与自然的关系&#xff0c;以衣为载体&#xff0c;秉承东方哲学的艺术理念&#xff0c;将美学艺术与主流时尚设计融合&#xff0c;赋予当代时装表达新方向&#xff0c;共创现代女性之美。 取自然之意境&#xff0c…

list.sort()Collections.sort()深入理解

list.sort()&&Collections.sort() 文章目录 list.sort()&&Collections.sort()背景相关代码代码一代码二 原理举一反三 业务场景考虑 背景 业务中经常用到List的sort()方法&#xff0c;但是对于其中return的-1&#xff0c;0&#xff0c;1理解不到位&#xff0c…

蓝桥杯 2022 省B 李白打酒加强版

这题用递归暴力的方法如下&#xff1a; #include<iostream> #include<bits/stdc.h> using namespace std; int num; int N,M; void dfs(int now,int n,int m) {if(now<0 || n>N ||m>M)return ;if(nN && mM){if(now1)num1;return;}dfs(now-1,n,m1…

微服务day05(下) -- ES文档操作 + RestApi + RestClient操作文档

3.1.新增文档 语法&#xff1a; POST /索引库名/_doc/文档id {"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ... } 示例&#xff1a; # 插…

内网使用rustdesk进行远程协助

文章目录 前言一、搭建rustdesk中继服务器二、搭建文件下载服务器三、创建引导脚本四、使用 前言 内网没有互联网环境&#xff0c;没法使用互联网上有中继服务器的远程协助工具&#xff0c;如teamviewer、todesk、向日癸等&#xff1b;在内网进行远程维护可以自己搭建中继服务…

网络基础「HTTP」

&#x1f52d;个人主页&#xff1a; 北 海 &#x1f6dc;所属专栏&#xff1a; Linux学习之旅、神奇的网络世界 &#x1f4bb;操作环境&#xff1a; CentOS 7.6 阿里云远程服务器 文章目录 1.再谈协议1.1.认识URL1.2.Encode 和 Decode 2.HTTP 协议2.1.协议格式2.2.见一见请求2.…

OpenAI GPT商店面临质量与合规问题;黄仁勋预测:十年内AI将实时生成游戏画面

&#x1f989; AI新闻 &#x1f680; OpenAI GPT商店面临质量与合规问题 摘要&#xff1a;OpenAI旗下的GPT商店因存在大量涉嫌侵权内容、助长学术不诚实行为及违规内容等问题而引起关注。其中包括未经授权使用迪士尼、漫威角色生成内容的GPT模型&#xff0c;以及声称能绕过剽…

HCIP的学习(3)

网络类型及数据链路层协议 网络类型分类 P2P网络----点到点网络类型MA网络-----多点接入网络 BMA----广播型多点接入网络NBMA—非广播型多点接入网络&#xff08;快淘汰了&#xff09; 数据链路层协议 MA网络 以太网协议 特点&#xff1a;需要使用MAC地址对设备进行区分…

Java安全 反序列化(5) CC6链原理分析

Java安全 反序列化(5) CC6链原理分析 CC6学习的目的在于其可以无视jdk版本&#xff0c;这条链子更像CC1-LazyMap和URLDNS链子的缝合版 文章目录 Java安全 反序列化(5) CC6链原理分析前言一.CC6的原理和实现以及易错点我们如何实现调用LazyMap.get()方法一个易错点 二.完整CC6P…

【超全详解】Maven工程配置与常见问题解决指南

Maven工程 目录 Maven工程一、如何检查Maven工程是否配置正确&#xff1f;1、检查路径2、检查基本配置3、其他配置 二、Maven的基本操作基本操作install和package的区别 三、获取别人的Maven工程之后如何修改&#xff1f;四、如何正确写好配置文件&#xff1f;1.寻找配置资源2.…

Gitlab的流水线任务【实现每小时自动测试 dev分支的更新】

背景 在现代软件开发实践中&#xff0c;持续集成&#xff08;Continuous Integration, CI&#xff09;是确保代码质量和快速响应软件缺陷的关键策略。GitLab 提供了强大的 CI/CD 功能&#xff0c;允许开发者自动化测试和部署流程。本文将介绍如何设置 GitLab 流水线计划任务&a…

Java22重磅发布!!!!卷不动了,真的卷不动了。。。。

就在3月19日&#xff0c;Java22重磅发布。Java22新增了12项增强功能&#xff0c;其中包括七个预览特性和一个孵化器特性&#xff0c;这些功能都显著到足以引起JDK增强提案&#xff08;JEPs&#xff09;的关注。它们涵盖了Java语言、其API、性能以及JDK中包含的工具的改进。 真…

【网络基础】VRRP虚拟路由冗余协议介绍与配置

目录 一、VRRP的概述 1.1 VRRP的由来 1.2 作用 1.3 基本结构 1.4 状态机流程 1.5 设备类型 二、 实例演示 一、VRRP的概述 1.1 VRRP的由来 局域网中的用户终端通常采用配置一个默认网关的形式访问外部网络&#xff0c;如果此时默认网关设备发生故障&#xff0c;将中断…

设计模式 --4:工厂方法模式

总结 &#xff1a; 个人理解&#xff1a; 工厂方法模式就是在简单工程模式的基础下将工厂类抽象出来。如果不抽象工厂类 &#xff0c;每一次创建一个新的算法&#xff0c;都要修改原来的工厂类&#xff0c;这不符合 开放–封闭原则 将工厂类给抽象出来&#xff0c;让具体的算法…

使用zabbix自动发现规则监控oracle分区表的分区键的合法

一、 创建从数据库查询原始数据脚本 编写脚本query_table.sh vim query_table.sh #!/bin/bash temp_outfile"/tmp/table.source" outfile"/tmp/table.txt" source /home/oracle/.bash_profilesqlplus -s zabbix/zabbix>${temp_outfile}<<EOF c…

贪心算法入门

简介 贪心算法&#xff08;Greedy Algorithm&#xff09;是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法。也就是首先选取局部最优&#xff0c;从局部最优推出全局最优。 举例…

【python开发】安装配置启动+数据库管理+表管理+数据行管理+python操作Mysql及相关安全的问题

Mysql入门 一、安装&启动1、安装2、测试3、设置和修改root密码 二、数据库管理1、内置客户端操作&#xff08;1&#xff09;查看当前所有的数据库(show databases);&#xff08;2&#xff09;创建数据库&#xff1a;create database learn&#xff08;数据库名&#xff09;…