YOLOv5-Y5周:yolo.py文件解读

 本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制

我的环境:

1.语言:python3.7

2.编译器:pycharm

3.深度学习框架Tensorflow/Pytorch 1.8.0+cu111


一、代码解读

import argparse
import contextlib
import os
import platform
import sys
from copy import deepcopy
from pathlib import PathFILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relativefrom models.common import *  # noqa
from models.experimental import *  # noqa
from utils.autoanchor import check_anchor_order
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,time_sync)try:import thop  # for FLOPs computation
except ImportError:thop = None
  • argparse 用于命令行参数解析
  • contextlib 用于上下文管理
  • osplatform 用于操作系统和平台相关的功能
  • deepcopy 用于深拷贝对象
  • Path 用于处理文件路径
  • 尝试导入 thop 库,用于计算模型的浮点运算量

FILE 是当前文件的绝对路径

ROOT 是当前文件的父目录的父目录

Detect类

class Detect(nn.Module):# YOLOv5 Detect head for detection modelsstride = None  # strides computed during builddynamic = False  # force grid reconstructionexport = False  # export modedef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.empty(0) for _ in range(self.nl)]  # init gridself.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use inplace ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)if isinstance(self, Segment):  # (boxes + masks)xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf.sigmoid(), mask), 4)else:  # Detect (boxes only)xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, self.na * nx * ny, self.no))return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):d = self.anchors[i].devicet = self.anchors[i].dtypeshape = 1, self.na, ny, nx, 2  # grid shapey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibilitygrid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)return grid, anchor_grid
  1. stride:用于存储在构建期间计算的步幅(strides),在前向传播中使用。
  2. dynamicexport:这两个属性都是布尔值,分别用于指示是否强制进行网格重构和导出模式。
  3. __init__ 方法:初始化函数,接受一些参数,包括 nc(类别数)、anchors(锚框)、ch(通道数)、inplace(是否使用原地操作)。
    • nc:类别数
    • no:每个锚框的输出数(类别数加上5)
    • nl:检测层的数量(锚框的数量)
    • na:每个检测层的锚框数量
    • gridanchor_grid:用于存储网格和锚框网格的空列表
    • anchors:将锚框转换为张量并注册为缓冲区
    • m:输出卷积的模块列表
  4. forward 方法:前向传播函数,接受输入张量 x,并返回输出张量。
    • 循环遍历每个检测层
    • 对输入进行卷积操作,并调整形状以适应后续处理
    • 如果不是训练模式,则进行推理操作
    • 根据是否是分割模式,对不同的输出进行不同的处理
    • 将处理后的输出添加到列表 z
    • 返回输出张量 x(如果是训练模式)、合并后的检测结果张量(如果是导出模式)或者分别返回这两者(如果不是训练模式且不是导出模式)
  5. _make_grid 方法:用于生成网格和锚框网格。
    • 创建网格和锚框网格
    • 根据输入的尺寸和索引调整形状
    • 返回网格和锚框网格

parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):with contextlib.suppress(NameError):args[j] = eval(a) if isinstance(a, str) else a  # eval stringsn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

该函数将模型的模块拼接起来,搭建完成网络模型。如果要改动模型框架,需要修改此函数。

  • 从配置信息中提取 anchors、nc(类别数)、gd(深度倍数)、gw(宽度倍数)和激活函数类型。
  • 遍历配置中的 backbonehead,这两个部分描述了模型的骨干网络和检测头。
  • 对于每个模块,根据其类型进行相应的处理:
    • 如果是卷积层(如 Conv、Bottleneck 等),根据深度倍数和宽度倍数调整输出通道数,并创建相应的模块。
    • 如果是 BatchNorm2d,则根据输入通道数创建模块。
    • 如果是 Concat,则根据输入通道数的总和创建模块。
    • 如果是 Detect 或 Segment,则根据输入通道数列表创建模块,并根据宽度倍数调整参数。
    • 如果是 Contract 或 Expand,则根据输入通道数和倍数调整输出通道数。
  • 创建模块实例,并记录相关信息,如模块类型、参数数量等。
  • 将构建好的模块添加到网络层序列中,并将需要保存输出的层索引记录下来。
  • 最后返回构建好的模型和需要保存输出的层索引。

BaseModel类

class BaseModel(nn.Module):# YOLOv5 base modeldef forward(self, x, profile=False, visualize=False):return self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _profile_one_layer(self, m, x, dt):c = m == self.model[-1]  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x, ), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, (Detect, Segment)):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self

  BaseModel 类是 YOLOv5 模型的基类,包含了一些用于模型前向推断、性能评估和模型信息打印等方法。

  • forward(self, x, profile=False, visualize=False): 定义了模型的前向传播过程。根据参数 profilevisualize 的设置,选择是否进行性能分析和特征可视化。调用了 _forward_once 方法来执行单次前向传播。

  • _forward_once(self, x, profile=False, visualize=False): 单次前向传播过程。遍历模型中的每一层,根据保存输出的层索引记录下需要的特征。如果设置了 profile 参数,则调用 _profile_one_layer 方法进行性能分析。如果设置了 visualize 参数,则调用 feature_visualization 方法进行特征可视化。

  • _profile_one_layer(self, m, x, dt): 对单个模块进行性能分析。计算模块的 FLOPs(浮点运算量)和运行时间,并输出日志信息。

  • fuse(self): 将模型中的 Conv2d()BatchNorm2d() 层融合为单个层。通过遍历模型中的每个模块,对满足条件的模块进行融合操作,并更新模型结构。

  • info(self, verbose=False, img_size=640): 打印模型的相关信息。调用了 model_info 方法来输出模型的结构、参数数量等信息。

  • _apply(self, fn): 应用给定的函数到模型的张量上,例如 to(), cpu(), cuda(), half()。在这个方法中,除了将函数应用到模型的张量参数上之外,还更新了 DetectSegment 类型模块中的一些属性,如 stridegridanchor_grid

DetectionModel类

class DetectionModel(BaseModel):# YOLOv5 detection modeldef __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, (Detect, Segment)):s = 256  # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardcheck_anchor_order(m)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility

 DetectionModel 类是基于 BaseModel 类构建的,用于实现 YOLOv5 目标检测模型。它继承了 BaseModel 类的一些方法,并根据 YOLOv5 模型的配置文件初始化模型。

  • __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): 初始化方法,接收模型的配置文件路径 cfg、输入通道数 ch、类别数 nc 和 anchors。首先根据配置文件初始化模型,然后根据传入的参数进行相应的修改,如修改输入通道数、类别数或 anchors。接着构建模型,解析配置文件并初始化模型的权重。最后打印模型的信息。

  • forward(self, x, augment=False, profile=False, visualize=False): 模型的前向传播方法。如果设置了 augment 参数,则执行增强推断,即对输入图像进行尺度变换和翻转操作,然后进行单次前向传播。如果未设置 augment 参数,则执行单次前向传播。根据参数 profilevisualize 的设置,选择是否进行性能分析和特征可视化。

  • _forward_augment(self, x): 执行增强推断的方法。根据预设的尺度因子和翻转方式,对输入图像进行处理,然后进行单次前向传播。最后对预测结果进行逆操作,将结果还原到原始图像尺寸。

  • _descale_pred(self, p, flips, scale, img_size): 对增强推断得到的预测结果进行逆操作,将预测框的坐标还原到原始图像尺寸。

  • _clip_augmented(self, y): 对增强推断得到的预测结果进行裁剪,去除多余的预测框。

  • _initialize_biases(self, cf=None): 初始化模型中的偏置项。根据目标检测中的一些规则,调整偏置项的值以适应目标检测任务。

二、修改部分

1、common.py

在C3类下增加C2类:

class C2(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):#return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))return torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)

2、yolov5s.yaml文件修改

注意将Y3周时修改的两个C3改回。

增加C2

backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 3, C2, [128]][-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],          # 4[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],          #6[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]

3、yolo.py修改

parse_model函数部分修改(添加C2)

        if m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C2, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C2, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/764390.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【洛谷 P8715】[蓝桥杯 2020 省 AB2] 子串分值 题解(组合数学+乘法原理)

[蓝桥杯 2020 省 AB2] 子串分值 题目描述 对于一个字符串 S S S, 我们定义 S S S 的分值 f ( S ) f(S) f(S) 为 S S S 中恰好出现一次的字符个数。例如 f ( ′ ′ a b a ′ ′ ) 1 f\left({ }^{\prime \prime} \mathrm{aba}{ }^{\prime \prime}\right)1 f(′′aba′′)…

Vscode与Cmake搭配配置opencv使用

vscode与Cmake基本使用 下载插件 CtrlShiftp打开VSCode的指令面板&#xff0c;然后输入cmake:q&#xff0c;VSCode会根据输入自动提示&#xff0c;然后选择CMake: Quick Start选择编译器根据提示输入项目名称选择可执行文件编译项目 方式一&#xff1a;执行命令cd build cmake…

一键将自己网增加一个抖音小程序-源代码

把自己的网址链接&#xff0c;也就是你想要的一个页面转变为抖音小程序&#xff0c;让你轻松拥有一个自己的抖音小程序。 几分钟搞定。 跟着视频来操作就可以了&#xff0c;很简单。视频一定要完整看完啊&#xff0c;对于小白。 如果你的网址可能有不好过审核的页面&#xff0c…

基于python+vue的stone音乐播放器的设计与实现flask-django-php-nodejs

随着我国经济的高速发展与人们生活水平的日益提高&#xff0c;人们对生活质量的追求也多种多样。尤其在人们生活节奏不断加快的当下&#xff0c;人们更趋向于足不出户解决生活上的问题&#xff0c;stone音乐播放器展现了其蓬勃生命力和广阔的前景。与此同时&#xff0c;为解决用…

华为配置WLAN 802.1X认证实验

配置WLAN 802.1X认证示例 组网图形 图1 配置802.1X认证组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤 业务需求 用户接入WLAN网络&#xff0c;使用802.1X客户端进行认证&#xff0c;输入正确的用户名和密码后可以无线上网。且在覆盖区域内移动发生漫游时&…

MySQL面试题--MySQL内部技术架构

目录 1.Mysql内部支持缓存查询吗&#xff1f; 2.MySQL8为何废弃掉查询缓存&#xff1f; 3.替代方案是什么&#xff1f; 4.Mysql内部有哪些核心模块组成&#xff0c;作用是什么&#xff1f; 5.一条sql发送给mysql后&#xff0c;内部是如何执行的&#xff1f;&#xff08;说…

MYSQL 同步到ES 如何设计架构保持一致性

简单使用某个组件很容易&#xff0c;但是一旦要搬到生产上就要考虑各种各样的异常&#xff0c;保证你方案的可靠性&#xff0c;可恢复性就是我们需要思考的问题。今天来聊聊我们部门在 MYSQL 同步到ES的方案设计。 在面对复杂条件查询时&#xff0c;MYSQL往往显得力不从心&…

Gitlab介绍

1.什么是Gitlab GitLab是一个流行的版本控制系统平台&#xff0c;主要用于代码托管、测试和部署。 GitLab是基于Git的一个开源项目&#xff0c;它提供了一个用于仓库管理的Web服务。GitLab使用Ruby on Rails构建&#xff0c;并提供了诸如wiki和issue跟踪等功能。它允许用户通…

从0到1实现RPC | 02 RpcConsumer的远程调用

一、RPC的简化版原理如下图&#xff08;核心是代理机制&#xff09;。 1.本地代理存根: Stub 2.本地序列化反序列化 3.网络通信 4.远程序列化反序列化 5.远程服务存根: Skeleton 6.调用实际业务服务 7.原路返回服务结果 8.返回给本地调用方 二、新建一个模块rpc-demo-c…

后端程序员入门react笔记(九)- react 插件使用

setState setState引起的react的状态是异步的。操作完毕setState之后如果直接取值&#xff0c;可能取不到最新的值&#xff0c;我们举个例子console.log(this.state.num)打印的值&#xff0c;总是上一次的值而不是最新的。 import React, {Component} from react; class Ap…

基于ArcGIS的2015-2020辽宁省土地利用变化分析

数据准备 栅格转面 运行ArcToolbox&#xff0c;打开【转换工具】&#xff0c;选择【从栅格转出】里面的【栅格转面工具】&#xff0c;调出面板进行参数设置。输入栅格选择裁剪的2015年中国土地利用遥感监测数据&#xff08;…

数据挖掘与分析学习笔记

一、Numpy NumPy&#xff08;Numerical Python&#xff09;是一种开源的Python库&#xff0c;专注于数值计算和处理多维数组。它是Python数据科学和机器学习生态系统的基础工具包之一&#xff0c;因为它高效地实现了向量化计算&#xff0c;并提供了对大型多维数组和矩阵的支持…

【ReactJS】使用GoJS实现自己的图表App

目录 1:用于绘制自定义图表的JavaScript库:用于绘制UML(或BPMN或ERD …)图表的JavaScript库:2:为什么选择GoJS?3:让我们使用现有的React应用程序:步骤1:步骤2:步骤3:步骤4:推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战1:…

git创建仓库、克隆、拉取、上传、历史等常见操作集锦

本地工作目录、暂存区、本地仓库和远程仓库 workspace工作区:本地项目地址index/stage暂存区:git add .将工作区内容加入到了暂存区repository本地仓库:在本地存储多个版本的文件,也称为版本库。其中有一个head指针指向最新放入仓库的文件版本,git commit -m "描述你…

[医学分割大模型系列] (1) SAM 分割大模型解析

[医学大模型系列] [1] SAM 分割大模型解析 1. 特点2. 网络结构2.1 Image encoder2.2 Prompt encoder2.3 Mask decoder 3. 数据引擎4. 讨论 论文地址&#xff1a;Segment Anything 开源地址&#xff1a;https://github.com/facebookresearch/segment-anything demo地址&#x…

C#,图片分层(Layer Bitmap)绘制,反色、高斯模糊及凹凸贴图等处理的高速算法与源程序

1 图像反色Invert 对图像处理的过程中会遇到一些场景需要将图片反色,反色就是取像素的互补色,比如当前像素是0X00FFFF,对其取反色就是0XFFFFFF – 0X00FFFF = 0XFF0000,依次对图像中的每个像素这样做,最后得到的就是原始2 图像的反色。 2 高斯模糊(Gauss Blur)算法 …

cesium知识点:坐标系

一&#xff0c;地理坐标系 1.经纬度坐标系 对象&#xff1a;没有实际的对象 说明&#xff1a;cesium默认使用WGS84坐标系作为空间参考&#xff0c;坐标原点在椭球的质心。 2.弧度坐标系(Cartographic) 对象&#xff1a;new Cesium.Cartographic(longitude, latitude, heigh…

easyExcel大数据量导出oom

easyExcel大数据量导出 异常信息 com.alibaba.excel.exception.ExcelGenerateException: java.lang.OutOfMemoryError: GC overhead limit exceededat com.alibaba.excel.write.ExcelBuilderImpl.fill(ExcelBuilderImpl.java:84)at com.alibaba.excel.ExcelWriter.fill(Excel…

AI智能分析网关V4养老院视频智能监控方案

随着科技的快速发展&#xff0c;智能监控技术已经广泛应用于各个领域&#xff0c;尤其在养老院这一特定场景中&#xff0c;智能监控方案更是发挥着不可或缺的作用。尤其是伴随着社会老龄化趋势的加剧&#xff0c;养老院的安全管理问题也日益凸显。为了确保老人的生活安全&#…