谷歌具身智能最新进展:RT-H 机器人通用灵巧抓取

随着 GPT-4 等大型语言模型与机器人研究的结合愈发紧密,人工智能正在越来越多地走向现实世界,因此具身智能相关的研究也正受到越来越多的关注。在众多研究项目中,谷歌的「RT」系列机器人始终走在前沿(参见《大模型正在重构机器人,谷歌 Deepmind 这样定义具身智能的未来》)。

在这里插入图片描述

谷歌 DeepMind 去年 7 月推出的 RT-2:全球第一个控制机器人的视觉 - 语言 - 动作(VLA)模型。只需要像对话一样下达命令,它就能在一堆图片中辨认出霉霉,并送给她一罐可乐。

如今,这个机器人又进化了。最新版的 RT 机器人名叫「RT-H」,它能通过将复杂任务分解成简单的语言指令,再将这些指令转化为机器人行动,来提高任务执行的准确性和学习效率。举例来说,给定一项任务,如「盖上开心果罐的盖子」和场景图像,RT-H 会利用视觉语言模型(VLM)预测语言动作(motion),如「向前移动手臂」和「向右旋转手臂」,然后根据这些语言动作,预测机器人的行动(action)。

在这里插入图片描述

这个行动层级(action hierarchy)对于提高机器人完成任务的准确性和学习效率非常有帮助,使得 RT-H 在一系列机器人任务中的表现都优于 RT-2。

以下是论文的详细信息。

论文概览

论文标题:RT-H: Action Hierarchies Using Language

论文链接:https://arxiv.org/pdf/2403.01823.pdf

项目链接:https://rt-hierarchy.github.io/

语言是人类推理的引擎,它使我们能够将复杂概念分解为更简单的组成部分,纠正我们的误解,并在新环境中推广概念。近年来,机器人也开始利用语言高效、组合式的结构来分解高层次概念、提供语言修正或实现在新环境下的泛化。

这些研究通常遵循一个共同的范式:面对一个用语言描述的高层任务(如「拿起可乐罐」),它们学习将观察和语言中的任务描述映射到低层次机器人行动的策略,这需要通过大规模多任务数据集实现。语言在这些场景中的优势在于编码类似任务之间的共享结构(例如,「拿起可乐罐」与「拿起苹果」),从而减少了学习从任务到行动映射所需的数据。然而,随着任务变得更加多样化,描述每个任务的语言也变得更加多样(例如,「拿起可乐罐」与「倒一杯水」),这使得仅通过高层次语言学习不同任务之间的共享结构变得更加困难。

为了学习多样化的任务,研究者的目标是更准确地捕捉这些任务之间的相似性。

他们发现语言不仅可以描述高层次任务,还能细致说明完成任务的方法 —— 这种表示更细腻,更贴近具体动作。例如,「拿起可乐罐」这一任务可以分解为一系列更细节的步骤,即「语言动作(language motion)」:首先「手臂向前伸」,接着「抓紧罐子」,最后「手臂上举」。研究者的核心洞见是,通过将语言动作作为连接高层次任务描述与底层次动作之间的中间层,可以利用它们来构建一个通过语言动作形成的行动层级。

建立这种行动层级有几大好处:

它使不同任务之间在语言动作层面上能够更好地共享数据,使得语言动作的组合和在多任务数据集中的泛化性得到增强。例如,「倒一杯水」与「拿起可乐罐」虽在语义上有所不同,但在执行到捡起物体之前,它们的语言动作完全一致。

语言动作不是简单的固定原语,而是根据当前任务和场景的具体情况通过指令和视觉观察来学习的。比如,「手臂向前伸」并没具体说明移动的速度或方向,这取决于具体任务和观察情况。学习到的语言动作的上下文依赖性和灵活性为我们提供了新的能力:当策略未能百分百成功时,允许人们对语言动作进行修正(见图 1 中橙色区域)。进一步地,机器人甚至可以从这些人类的修正中学习。例如,在执行「拿起可乐罐」的任务时,如果机器人提前关闭了夹爪,我们可以指导它「保持手臂前伸的姿势更久一些」,这种在特定场景下的微调不仅易于人类指导,也更易于机器人学习。

在这里插入图片描述

鉴于语言动作存在以上优势,来自谷歌 DeepMind 的研究者设计了一个端到端的框架 ——RT-H(Robot Transformer with Action Hierarchies,即使用行动层级的机器人 Transformer),专注于学习这类行动层级。RT-H 通过分析观察结果和高层次任务描述来预测当前的语言动作指令,从而在细节层面上理解如何执行任务。接着,利用这些观察、任务以及推断出的语言动作,RT-H 为每一步骤预测相应的行动,语言动作在此过程中提供额外的上下文,帮助更准确地预测具体行动(图 1 紫色区域)。

此外,他们还开发了一种自动化方法,从机器人的本体感受中提取简化的语言动作集,建立了包含超过 2500 个语言动作的丰富数据库,无需手动标注。

RT-H 的模型架构借鉴了 RT-2,后者是一个在互联网规模的视觉与语言数据上共同训练的大型视觉语言模型(VLM),旨在提升策略学习效果。RT-H 采用单一模型同时处理语言动作和行动查询,充分利用广泛的互联网规模知识,为行动层级的各个层次提供支持。

在实验中,研究者发现使用语言动作层级在处理多样化的多任务数据集时能够带来显著的改善,相比 RT-2 在一系列任务上的表现提高了 15%。他们还发现,对语言动作进行修正能够在同样的任务上达到接近完美的成功率,展示了学习到的语言动作的灵活性和情境适应性。此外,通过对模型进行语言动作干预的微调,其表现超过了 SOTA 交互式模仿学习方法(如 IWR)50%。最终,他们证明了 RT-H 中的语言动作能够更好地适应场景和物体变化,相比于 RT-2 展现出了更优的泛化性能。

RT-H 架构详解

为了有效地捕获跨多任务数据集的共享结构(不由高层次任务描述表征),RT-H 旨在学习显式利用行动层级策略。

具体来说,研究团队将中间语言动作预测层引入策略学习中。描述机器人细粒度行为的语言动作可以从多任务数据集中捕获有用的信息,并可以产生高性能的策略。当学习到的策略难以执行时,语言动作可以再次发挥作用:它们为与给定场景相关的在线人工修正提供了直观的界面。经过语言动作训练的策略可以自然地遵循低水平的人工修正,并在给定修正数据的情况下成功完成任务。此外,该策略甚至可以根据语言修正数据进行训练,并进一步提高其性能。

如图 2 所示,RT-H 有两个关键阶段:首先根据任务描述和视觉观察预测语言动作,然后根据预测的语言动作、具体任务、观察结果推断精确的行动。

在这里插入图片描述

RT-H 使用 VLM 主干网络并遵循 RT-2 的训练过程来进行实例化。与 RT-2 类似,RT-H 通过协同训练利用了互联网规模数据中自然语言和图像处理方面的大量先验知识。为了将这些先验知识合并到行动层级的所有层次中,单个模型会同时学习语言动作和行动查询。

实验结果

为了全面评估 RT-H 的性能,研究团队设置了四个关键的实验问题:

Q1(性能):带有语言的行动层级是否可以提高多任务数据集上的策略性能?

Q2(情境性):RT-H 学得的语言动作是否与任务和场景情境相关?

Q3(纠正):在语言动作修正上进行训练比远程(teleoperated)修正更好吗?

Q4(概括):行动层级是否可以提高分布外设置的稳健性?

数据集方面,该研究采用一个大型多任务数据集,其中包含 10 万个具有随机对象姿态和背景的演示样本。该数据集结合了以下数据集:

Kitchen:RT-1 和 RT-2 使用的数据集,由 70K 样本中的 6 个语义任务类别组成。

Diverse:一个由更复杂的任务组成的新数据集,具有超过 24 个语义任务类别,但只有 30K 样本。

该研究将此组合数据集称为 Diverse+Kitchen (D+K) 数据集,并使用自动化程序对其进行语言动作标记。为了评估在完整 Diverse+Kitchen 数据集上训练的 RT-H 的性能,该研究针对八项具体任务进行了评估,包括:

1)将碗直立放在柜台上

2)打开开心果罐

3)关闭开心果罐

4)将碗移离谷物分配器

5)将碗放在谷物分配器下方

6)将燕麦片放入碗中

7)从篮子里拿勺子

8)从分配器中拉出餐巾

选择这八个任务是因为它们需要复杂的动作序列和高精度。

在这里插入图片描述

下表给出了在 Diverse+Kitchen 数据集或 Kitchen 数据集上训练时 RT-H、RT-H-Joint 和 RT-2 训练检查点的最小 MSE。RT-H 的 MSE 比 RT-2 低大约 20%,RTH-Joint 的 MSE 比 RT-2 低 5-10%,这表明行动层级有助于改进大型多任务数据集中的离线行动预测。RT-H (GT) 使用 ground truth MSE 指标,与端到端 MSE 的差距为 40%,这说明正确标记的语言动作对于预测行动具有很高的信息价值。

在这里插入图片描述

图 4 展示了几个从 RT-H 在线评估中获取的上下文动作示例。可以看到,相同的语言动作通常会导致完成任务的行动发生微妙的变化,同时仍尊重更高级别的语言动作。

在这里插入图片描述

如图 5 所示,研究团队通过在线干预 RT-H 中的语言动作来展示 RT-H 的灵活性。

在这里插入图片描述

该研究还用比较实验来分析修正的作用,结果如下图 6 所示:

在这里插入图片描述

如图 7 所示,RT-H 和 RT-H-Joint 对场景变化明显更加稳健:

在这里插入图片描述

实际上,看似不同的任务之间具备一些共享结构,例如这些任务中每一个都需要一些拾取行为来开始任务,并且通过学习跨不同任务的语言动作的共享结构,RT-H 可以完成拾取阶段而无需任何修正。

在这里插入图片描述

即使当 RT-H 不再能够泛化其语言动作预测时,语言动作修正通常也可以泛化,因此只需进行一些修正就可以成功完成任务。这表明语言动作在扩大新任务数据收集方面的潜力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/761555.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

各位老板,你需要的工厂数字孪生可视化库在这

各位老板是不是很喜欢下面这种有逼格的大屏,下面介绍一下怎么实现的,保证有所收获。 Cesium是一个开源的WebGL JavaScript库,用于创建高性能的三维地球、地图和虚拟环境。它支持在浏览器中实现高质量的地球模拟,同时提供了丰富的功能特点,使得…

Superset二次开发之PostgreSQL 统计信息介绍

pg_stat_user_tables 视图提供了关于 PostgreSQL 数据库中用户定义表的统计信息。这些统计信息涵盖了从表的扫描操作到修改次数等多个方面。 以下是 pg_stat_user_tables 中所有字段的含义: relid: 表的 OID(对象标识符)。这是表在系统中的…

k8s系列之十五 Istio 部署Bookinfo 应用

Bookinfo 应用中的几个微服务是由不同的语言编写的。 这些服务对 Istio 并无依赖,但是构成了一个有代表性的服务网格的例子:它由多个服务、多个语言构成,并且 reviews 服务具有多个版本。 该应用由四个单独的微服务构成。 这个应用模仿在线书…

模板高级使用(非类型模板参数,特化,分离编译)

文章目录 模板没有实例化取内嵌类型报错问题非类型模板参数模板的特化函数模板的特化类模板的特化1.全特化2.偏特化 模板的分离编译 模板没有实例化取内嵌类型报错问题 首先在这里分享一个模板的常见报错问题。就是模板的在没有实例化的情况下去取模板类里面的内嵌类型这时候的…

代码随想录|Day25|回溯05|491.非递减子序列、46.全排列、47.全排列II

491. 非递减子序列 本题并不能像 90.子集II 那样,使用排序进行树层去重。虽然题目没有明确不能排序,但如果排序了,集合本身就是递增子序列,这是LeetCode示例2中没有出现的。 所以本题的关键在于,如何在不排序的情况下对…

引入spring security 403问题

禁用 csrf 即可 httpSecurity.csrf(csrf -> csrf.disable()); Configuration public class SecurityConfig {/*** 认证管理器** param authenticationConfiguration* return* throws Exception*/Beanpublic AuthenticationManager authenticationManager(AuthenticationConf…

请解释 VB.NET 中的多态性(Polymorphism)以及如何实现它。

请解释 VB.NET 中的多态性(Polymorphism)以及如何实现它。 多态性(Polymorphism)是面向对象编程中的一个重要概念,它允许不同的对象对同一个消息作出不同的响应。在VB.NET中,多态性通过继承和方法重写来实…

2024格行VS华为VS飞猫哪个是最值得购买随身WiFi?中兴随身WiFi好用吗?

经常出差旅行,或者户外工作的朋友因为长期在外,手机流量经常不够用,想必都是随身WiFi的忠实用户,但是也都被这款产品割韭菜割的头皮发麻。今天,我们统计了市面上最靠谱的、最热销、口碑最好的几款随身WiFi。排名依据来…

Java学习笔记(17)

集合进阶 单列集合 Collection List set Add clear remove contains isempty size Add方法可能也会添加失败 同理,可能删除失败 Contains细节 为什么要重写equals? 因为contains底层用的是object类中的equals方法,比较的是地址值&#xf…

为什么穷人什么都懂,就是不懂赚钱?2024金矿项目! 2024创业好项目 !2024创业新项目新商机! 2024超级机会

为什么穷人什么都懂,就是不懂赚钱?有位网友是这么说的,穷人的思维有一个致命的缺陷,就是追求确定性,进而失去了可能性。而赚钱的真相实际上非常残酷。世界上能够赚钱的事情必定是不确定的,能够赚取巨额财富…

万亿参数GPU!算力提升30倍!英伟达新核弹B200重磅发布!

关注文章底部的公众号,获取每日AI资讯 前沿 3月18日-21日期间,英伟达在美国圣何塞召开GTC大会。创始人黄仁勋也在GTC大会上,做了一场长达两小时的开幕演讲,展示了其在AI芯片、机器人、汽车等领域的最新研发成果和技术进展,号称让全世界用上AI。 全球头号人工智能领域开发…

【JavaEE -- 文件操作IO有关面试题】

文件操作IO有关面试题 1.查找硬盘上的文件位置1.1 思路1.2 执行代码 2. 实现文件复制2.1 思路2.2 代码执行 3. 打印搜索的词的文件路径3.1 思路3.2 代码执行 1.查找硬盘上的文件位置 给定一个文件名,去指定的目录中进行搜索,找到文件名匹配的结果&#…

算法第三十一天-直方图的水量

直方图的水量 题目要求 解题思路 使用面向列的计算比面向行的计算更加容易。我们只需要考虑当前的位置的左右最高模板的高度。 方法一、暴力解法 每个位置能接到多少雨水,很容易想到[木桶效应],即是由两边最短的木板限制的。那么直观思路就是&#x…

高职(大专)结构化面试之答题思路

目录 一、岗位认知 二、职教热点 三、教育教学 四、人际关系 五、组织管理 六、应急应变 七、时政与教育 八、专业知识 一、岗位认知 考试方向:主要考察对岗位的全面认识、职业目标、职业规划、职业理想。 必背题目: 1.“你为什么要报考我们学校的教师岗…

Postgres几种不同的索引提高查询性能

B-tree 索引: B-tree(平衡树)是 PostgreSQL 中最常用的索引类型。它适用于范围查询、排序和等值查询。B-tree索引对于数据类型的要求不严格,适用于大多数情况。 CREATE INDEX index_name ON table_name USING btree (column_name)…

扶贫惠农推介系统|基于jsp技术+ Mysql+Java+ B/S结构的扶贫惠农推介系统设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java,ssm,springboot的平台设计与实现项目系统开发资源(可…

量化探店记

1 人工智能的应用 人工智能(AI)在量化金融领域的应用非常广泛,它可以帮助量化交易员进行数据分析、模型建立、风险管理和交易决策等方面。以下是一些 AI 在量化金融中的常见应用,并附有相应的示例: 预测模型&#xff…

Python学习:元组

Python 元组概念 Python 中的元组(tuple)是不可变的有序集合。它是一种数据类型,类似于列表(list),但在创建后不能被修改。元组使用圆括号 () 来表示,其中的元素可以是任意类型,并且…

[M哈希表] lc2671. 频率跟踪器(哈希表+思维)

文章目录 1. 题目来源2. 题目解析 1. 题目来源 链接:2671. 频率跟踪器 2. 题目解析 挺有意思的哈希表题目,单独一个哈希表的话,每次遍历去判断有没有数字出现的次数,就会超时。 所以,考虑两个哈希表的使用&#xff…

初识数据库原理:为什么需要数据库?

初识数据库原理:什么是数据库? Chapter1:什么是数据库? 笔记来源:《漫画数据库》–科学出版社 1.1 为什么需要数据库? 文件应用的管理方式,数据会出现重复。 若各个部门各自管理自己一方的数…