算法系列--递归

一.如何理解递归

递归对于初学者来说是一个非常抽象的概念,笔者在第一次学习时也是迷迷糊糊的(二叉树遍历),递归的代码看起来非常的简洁,优美,但是如何想出来递归的思路或者为什么能用递归这是初学者很难分析出来的

笔者在学习的过程中通过刷题,也总结出自己的一些经验,总结来说就是要胆大心细,宏观看待问题

其实很多递归的问题如果从宏观的角度去看,其实特别简单,比如二叉树的后序遍历,他无非就是:

  1. 你先给我一个根节点
  2. 访问根节点的左子树
  3. 访问根节点的右子树
  4. 再打印当前节点的值

对于每一个节点的操作都是相同的,如果从宏观的角度看,我们可以把一个复杂的二叉树想象成一个只有三个节点的二叉树
在这里插入图片描述
把二叉树的后序遍历就当做访问这个只有三个节点的二叉树,按照左右根的顺序遍历

dfs(TreeNode root) {if(root == null) return;dfs(root.left);// 访问左节点dfs(root.right);// 访问右结点println(root.val);// 打印当前节点的值
}

大致总结下来递归问题的思路如下:

  1. 分析:根据题目分析,判断是否有重复的子问题,如果有,就可以利用递归解决,设计出函数头,从宏观的角度想,要完成这次操作,这个"接口"需要什么参数(二叉树的遍历需要root,快排需要一个数组和开始结束位置)
  2. 设计函数体:只关注某一个子问题的具体操作,比如二叉树的后序遍历的子问题就完成三步:访问左子树,访问右子树,打印当前节点
  3. 递归出口:确定好递归出口,将子问题分割到最小单元进行确定,比如二叉树的遍历当节点为空时就不需要再去执行任何操作了,直接返回即可,快排,分割到数组只有一个数字或者为空时(l >= r)就不需要继续分治了

二.例题解析:

1.汉诺塔问题

链接:https://leetcode.cn/problems/hanota-lcci/description/

分析:

  1. 函数头:给我三个柱子和盘子数
  2. 函数体:先借助c将a上的n-1个盘子移动到b,然后将a剩余的最大的盘子移动到c,再借助a,将b上的n-1个盘子移动到c
  3. 递归出口:当只有一个盘子的时候,直接移动
    在这里插入图片描述

代码:

class Solution {public void hanota(List<Integer> A, List<Integer> B, List<Integer> C) {int n = A.size();dfs(A,B,C,n);}private void dfs(List<Integer> a, List<Integer> b, List<Integer> c,int n) {// 递归结束条件 只有一个盘子的时候直接移动if(n == 1) {c.add(a.remove(a.size() - 1));return;}// 模拟:借助c,将a上的n-1个盘子移动到b上dfs(a,c,b,n-1);// 将最大的盘子移动到c上c.add(a.remove(a.size() - 1));// 模拟:借助a,将b盘上的n-1个盘子移动到c上dfs(b,a,c,n-1);}
}

2.合并两个有序链表

链接: https://leetcode.cn/problems/merge-two-sorted-lists/

分析:

  1. 函数头:两个链表的头结点
  2. 函数体:判断较小值,合并之后的所有节点,并连接返回的节点
  3. 递归出口:只有一个节点或者为空
    在这里插入图片描述

代码:

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {// 递归if(list1 == null) return list2;if(list2 == null) return list1;// 将后面的链表给我合并好,并且返回合并好的节点if(list1.val < list2.val) {list1.next = mergeTwoLists(list1.next,list2);return list1;}else {list2.next = mergeTwoLists(list2.next,list1);return list2;}}
}

3.反转链表

链接: https://leetcode.cn/problems/reverse-linked-list/submissions/514361305/

分析:

  1. 函数头:给我头结点,逆序整个链表
  2. 函数体:逆序之后的所有节点,并且返回逆序之后的头结点,然后和当前节点拼接
  3. 递归出口:只有一个节点或者为空
    在这里插入图片描述

代码:

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {// 递归出口if(head == null || head.next == null) return head;// 函数体  你给我逆置后面的所有链表并且返回新的头结点ListNode newhead = reverseList(head.next);// 反转head.next.next = head;head.next = null;return newhead;}
}

4.两两交换链表中的节点

链接: https://leetcode.cn/problems/swap-nodes-in-pairs/

分析:

  1. 函数头:重复子问题就是`给我一个节点,两两交换后面的链表的所有节点
  2. 函数体:关注每一个子问题要干什么,得到交换后的头节点,然后链接这个头结点
  3. 递归出口:空或者只有一个节点
    在这里插入图片描述

代码:

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode swapPairs(ListNode head) {if(head == null || head.next == null) return head;ListNode ret = head.next;// 最终要返回的节点应该是head.next(是头结点的下一个节点)ListNode newHead = swapPairs(head.next.next);head.next.next = head;head.next = newHead;return ret;}
}

5.Pow(x, n)- 快速幂

链接: https://leetcode.cn/problems/powx-n/submissions/514390268/

分析:

  1. 函数头:结合快速幂的思想,递归函数就是求x ^ n的值
  2. 函数体:每一个子问题的操作,得到 x ^ n / 2的值,再判断返回的结果的值
  3. 递归出口:n == 0

在这里插入图片描述
代码:

class Solution {public double myPow(double x, int n) {// 注意n可能为负数return n < 0 ? 1.0 / pow(x,-n) : pow(x,n);}public double pow(double x,int n) {if(n == 0) return 1.0;double tmp = pow(x,n/2);return n % 2 == 0 ? tmp * tmp : tmp * tmp * x;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/760721.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java开发---上海得帆(一面)

面试感受 这是我的第一次面试&#xff0c;我感觉我这次面试的很差&#xff0c;很糟糕&#xff0c;十分的糟糕&#xff0c;万分的糟糕。第一次面试&#xff0c;面试了半个小时。我去真的好紧张&#xff0c;脑子里一篇空白。脑子空白还不是最惨的&#xff0c;最惨的是那个八股文…

RabbitMQ--04--Spring Cloud Stream(消息驱动)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1.Spring Cloud Stream1. 基本介绍https://spring.io/projects/spring-cloud-stream#overview 2.Spring Cloud Stream 解决的痛点问题3.设计思想Stream为什么可以统…

2024网络安全-自学笔记

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防…

新火种AI|国产手机抢滩“AI+折叠屏”赛道,行业洗牌大战就此开启?

作者&#xff1a;小岩 编辑&#xff1a;彩云 从2023年到2024年&#xff0c;随着新一波人工智能浪潮的加速&#xff0c;消费电子产品也迎来了全新的话题——AI。更重要的是&#xff0c;这场战争看似没有硝烟&#xff0c;但各大厂商都已经暗自角力了许久&#xff0c;特别是手机…

Windows 11 鼠标右键可选择 cmd 命令行选项

** Windows 11 鼠标右键可选择 cmd 命令行选项 ** 在文件夹内打开命令行&#xff0c;只能使用 Windows 自带的 PowerShell &#xff0c; 作为一个 cmd 重度使用用户来说很是折磨&#xff0c;需要打开 cmd 然后切换盘符再 cd 。。。 现在咱们自己创建一个可以打开 cmd 的方法…

Qt调用内置图标

int IconIndex0; QIcon icon QApplication::style()->standardIcon((QStyle::StandardPixmap)IconIndex);按以上代码可以调用Qt内置的71个图标&#xff0c;只要变换IconIndex就可以了&#xff0c;IconIndex为[0,70]。显示如下&#xff1a;图标index名称。

图论中的最小生成树:Kruskal与Prim算法深入解析

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;アンビバレント—Uru 0:24━━━━━━️&#x1f49f;──────── 4:02 &#x1f504; ◀️ ⏸ ▶️ ☰ …

西井科技与安通控股签署战略合作协议 共创大物流全新生态

2024年3月21日&#xff0c;西井科技与安通控股在“上海硅巷”新象限空间正式签署战略合作框架协议。双方基于此前在集装箱物流的成功实践与资源优势&#xff0c;积极拓展在AI数字化产品、新能源自动驾驶解决方案和多场景应用&#xff0c;以及绿色物流链等领域的深度探索、强强联…

视频号下载助手失效了?如何解决下载视频问题!

在刷短视频的时候难免会遇到部分的视频号视频下载不下来&#xff0c;那我们该如何解决视频号下载问题呢&#xff1f; 视频号下载助手解决方案 视频号下载助手失效分为两种情况! 1、可以解析&#xff0c;但不能下载 根据使用视频号下载助手常见的问题&#xff0c;我们发现会有…

Linux本地部署TeslaMate结合内网穿透实现公网访问内网车辆信息

文章目录 1. Docker部署TeslaMate2. 本地访问TeslaMate3. Linux安装Cpolar4. 配置TeslaMate公网地址5. 远程访问TeslaMate6. 固定TeslaMate公网地址7. 固定地址访问TeslaMate TeslaMate是一个开源软件&#xff0c;可以通过连接特斯拉账号&#xff0c;记录行驶历史&#xff0c;统…

YOLOv3学习

YOLOv3仅使用卷积层&#xff0c;使其成为一个全卷积网络&#xff08;FCN&#xff09;。文章中&#xff0c;作者提出一个新的特征提取网络&#xff0c;Darknet-53。正如其名&#xff0c;它包含53个卷积层&#xff0c;每个后面跟随着batch normalization层和leaky ReLU层。没有池…

【网络原理】HTTP 请求 (Request)详解

文章目录 &#x1f38d;请求格式&#x1f384;认识URL&#x1f338;query string&#x1f338;关于 URL encode &#x1f340;认识 “方法” (method)&#x1f338;GET方法&#x1f338;POST 方法&#x1f338;GET 和 POST 的区别 &#x1f332;认识请求 “报头” (header)&…

权限管理系统-0.5.0

六、审批管理模块 审批管理模块包括审批类型和审批模板&#xff0c;审批类型如&#xff1a;出勤、人事、财务等&#xff0c;审批模板如&#xff1a;加班、请假等具体业务。 6.1 引入依赖 在项目中引入activiti7的相关依赖&#xff1a; <!--引入activiti的springboot启动器…

Git进阶命令-reset

一、reset命令使用场景 有时候我们提交了一些错误的或者不完善的代码&#xff0c;需要回退到之前的某个稳定的版本,面对这种情况有两种解决方法: 解决方法1&#xff1a;修改错误内容&#xff0c;再次commit一次 解决方法2&#xff1a;使用git reset 命令撤销这一次错误的com…

汽车KL15、KL30、ACC的区别

文章目录 前言一、KL30是什么&#xff1f;二、KL15是什么&#xff1f;KL15信号的演变 三、为啥用KL15、KL30呢&#xff1f; 前言 相信刚接触汽车电子的伙伴都会有一个疑惑&#xff0c;什么是KL15?什么是KL30? 内心一脸懵逼…… KL是德语Klemme的缩写&#xff0c;指的是ECU的…

RCE漏洞

RCE漏洞概述 远程命令执行/代码注入漏洞&#xff0c;英文全称为Reote Code/CommandExecute&#xff0c;简称RCE漏洞。PHPJava等Web开发语言包含命令执行和代码执行函数,攻击者可以直接向后台服务器远程执行操作系统命今或者运行注入代码&#xff0c;进而获取系统信息、控制后台…

2023年五级区划省市县乡镇行政村社区边界数据

行政区划数据是重要的基础地理信息数据&#xff0c;根据国家统计局公布的数据&#xff0c;行政区划共分为五级&#xff0c;分别为省级、地级、县级、乡镇/街道级、村/社区级。 该套数据以2020-2023年国家基础地理信息数据中的县区划数据作为矢量基础&#xff0c;辅以高德行政区…

Spring Security源码

WebSecurityConfigurerAdapter已废弃&#xff0c;官方推荐使用HttpSecurity 或WebSecurity。 都继承了SecurityBuilder public interface SecurityBuilder<O> {O build() throws Exception;}亮点&#xff1a;通过这种方式很容易知道知道自己构建的Object HttpSecurit…

Shell脚本学习-if循环

最小化的if语句 无实际用途 if [ ] ;then echo fi 脚本解释 if 判断 [ ] 里面的条件是否成立 后面跟then&#xff0c;代表条件成立 如果在一行则使用分号隔离&#xff08;;&#xff09; 如果不在一行使用则直接在下一行驶入then即可。 如果条件成立则输出echo 后面…

IT管理备考TOGAF10证书有哪些好处?

现今&#xff0c;随着信息技术的快速发展&#xff0c;企业对于高效的IT管理需求日益增长。而TOGAF10证书作为全球公认的企业架构管理标准&#xff0c;成为了IT管理者的必备工具。本文将为您详细介绍TOGAF10证书的好处&#xff0c;以助您更好地了解和利用这一强大的工具。 首先&…