调用代码:
var line1Start = new System.Windows.Point(line4.Syjd_X_BasicGeometry, line4.Syjd_Y_BasicGeometry);
var line1End = new System.Windows.Point(line4.Xyjd_X_BasicGeometry, line4.Xyjd_Y_BasicGeometry);
var line2Start = new System.Windows.Point(item.Syjd_X_BasicGeometry, item.Syjd_Y_BasicGeometry);
var line2End = new System.Windows.Point(item.Xyjd_X_BasicGeometry, item.Xyjd_Y_BasicGeometry);
System.Windows.Point point = new System.Windows.Point();
int intA = Intersection(line1Start, line1End, line2Start, line2End, ref point);
if (intA == 1 || intA == 2 || intA == 4 || intA == 5 || intA == 6)
{
}
对应方法:
public bool Equal(double f1, double f2)
{
return (Math.Abs(f1 - f2) < 1f);
}
/// <summary>
/// 比较两点坐标大小,先比较x坐标,若相同则比较y坐标
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public bool Dayu(System.Windows.Point p1, System.Windows.Point p2)
{
return (p1.X > p2.X || (Equal(p1.X, p2.X) && p1.Y > p2.Y));
}
/// <summary>
/// 判断两点是否相等
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public bool Dengyu(System.Windows.Point p1, System.Windows.Point p2)
{
return (Equal(p1.X, p2.X) && Equal(p1.Y, p2.Y));
}
/// <summary>
/// 计算两向量外积
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public double Ji(System.Windows.Point p1, System.Windows.Point p2)
{
return (p1.X * p2.Y - p1.Y * p2.X);
}
/// <summary>
///判定两线段位置关系,并求出交点(如果存在)。返回值列举如下:
///[有重合] 完全重合(6),1个端点重合且共线(5),部分重合(4)
///[无重合] 两端点相交(3),交于线上(2),正交(1),无交(0),参数错误(-1)
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <param name="p3"></param>
/// <param name="p4"></param>
/// <param name="point"></param>
/// <returns></returns>
public int Intersection(System.Windows.Point p1, System.Windows.Point p2, System.Windows.Point p3, System.Windows.Point p4, ref System.Windows.Point point)
{
//保证参数p1!=p2,p3!=p4
if (p1 == p2 || p3 == p4)
{
return -1; //返回-1代表至少有一条线段首尾重合,不能构成线段
}
//为方便运算,保证各线段的起点在前,终点在后。
if (Dayu(p1, p2))
{
System.Windows.Point pTemp = p1;
p1 = p2;
p2 = pTemp;
// swap(p1, p2);
}
if (Dayu(p3, p4))
{
System.Windows.Point pTemp = p3;
p3 = p4;
p4 = pTemp;
//swap(p3, p4);
}
//判定两线段是否完全重合
if (p1 == p3 && p2 == p4)
{
return 6;
}
//求出两线段构成的向量
System.Windows.Point v1 = new System.Windows.Point(p2.X - p1.X, p2.Y - p1.Y), v2 = new System.Windows.Point(p4.X - p3.X, p4.Y - p3.Y);
//求两向量外积,平行时外积为0
double Corss = Ji(v1, v2);
//如果起点重合
if (Dengyu(p1, p3))
{
point = p1;
//起点重合且共线(平行)返回5;不平行则交于端点,返回3
return (Equal(Corss, 0) ? 5 : 3);
}
//如果终点重合
if (Dengyu(p2, p4))
{
point = p2;
//终点重合且共线(平行)返回5;不平行则交于端点,返回3
return (Equal(Corss, 0) ? 5 : 3);
}
//如果两线端首尾相连
if (Dengyu(p1, p4))
{
point = p1;
return 3;
}
if (Dengyu(p2, p3))
{
point = p2;
return 3;
}//经过以上判断,首尾点相重的情况都被排除了
//将线段按起点坐标排序。若线段1的起点较大,则将两线段交换
if (Dayu(p1, p3))
{
System.Windows.Point pTemp = p1;
p1 = p3;
p3 = pTemp;
pTemp = p2;
p2 = p4;
p4 = pTemp;
pTemp = v1;
v1 = v2;
v2 = pTemp;
//swap(p1, p3);
//swap(p2, p4);
//更新原先计算的向量及其外积
//swap(v1, v2);
Corss = Ji(v1, v2);
}
//处理两线段平行的情况
if (Equal(Corss, 0))
{
//做向量v1(p1, p2)和vs(p1,p3)的外积,判定是否共线
System.Windows.Point vs = new System.Windows.Point(p3.X - p1.X, p3.Y - p1.Y);
//外积为0则两平行线段共线,下面判定是否有重合部分
if (Equal(Ji(v1, vs), 0))
{
//前一条线的终点大于后一条线的起点,则判定存在重合
if (Dayu(p2, p3))
{
point = p3;
return 4;//返回值4代表线段部分重合
}
}
//若三点不共线,则这两条平行线段必不共线。
//不共线或共线但无重合的平行线均无交点
return 0;
}
//以下为不平行的情况,先进行快速排斥试验
//x坐标已有序,可直接比较。y坐标要先求两线段的最大和最小值
double ymax1 = p1.Y, ymin1 = p2.Y, ymax2 = p3.Y, ymin2 = p4.Y;
if (ymax1 < ymin1)
{
double fTemp = ymax1;
ymax1 = ymin1;
ymin1 = fTemp;
}
if (ymax2 < ymin2)
{
double fTemp = ymax2;
ymax2 = ymin2;
ymin2 = fTemp;
}
//如果以两线段为对角线的矩形不相交,则无交点
if (p1.X > p4.X || p2.X < p3.X || ymax1 < ymin2 || ymin1 > ymax2)
{
return 0;
}//下面进行跨立试验
System.Windows.Point vs1 = new System.Windows.Point(p1.X - p3.X, p1.Y - p3.Y), vs2 = new System.Windows.Point(p2.X - p3.X, p2.Y - p3.Y);
System.Windows.Point vt1 = new System.Windows.Point(p3.X - p1.X, p3.Y - p1.Y), vt2 = new System.Windows.Point(p4.X - p1.X, p4.Y - p1.Y);
double s1v2, s2v2, t1v1, t2v1;
//根据外积结果判定否交于线上
if (Equal(s1v2 = Ji(vs1, v2), 0) && Dayu(p4, p1) && Dayu(p1, p3))
{
point = p1;
return 2;
}
if (Equal(s2v2 = Ji(vs2, v2), 0) && Dayu(p4, p2) && Dayu(p2, p3))
{
point = p2;
return 2;
}
if (Equal(t1v1 = Ji(vt1, v1), 0) && Dayu(p2, p3) && Dayu(p3, p1))
{
point = p3;
return 2;
}
if (Equal(t2v1 = Ji(vt2, v1), 0) && Dayu(p2, p4) && Dayu(p4, p1))
{
point = p4;
return 2;
}//未交于线上,则判定是否相交
if (s1v2 * s2v2 > 0 || t1v1 * t2v1 > 0)
{
return 0;
}//以下为相交的情况,算法详见文档
//计算二阶行列式的两个常数项
double ConA = p1.X * v1.Y - p1.Y * v1.X;
double ConB = p3.X * v2.Y - p3.Y * v2.X;
//计算行列式D1和D2的值,除以系数行列式的值,得到交点坐标
point.X = (int)((ConB * v1.X - ConA * v2.X) / Corss);
point.Y = (int)((ConB * v1.Y - ConA * v2.Y) / Corss);
//正交返回1
return 1;
}
其中 Equal 方法的 return (Math.Abs(f1 - f2) < 1f); 可以改成 Math.Abs(f1 - f2) < 1e-6 具体看需求
参考地址:
C# 平面内,判断两条线段关系,是否相交_c# 判断平面上两条线段是否交叉-CSDN博客