时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换;
2.评价指标RMSE、MAPE、MAE、MSE、R2等;
3.程序语言为matlab,程序可出预测效果图,误差分析图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

BiTCN-BiLSTM是双向时间卷积神经网络(BiTCN)与双向长短期记忆神经网络(BiLSTM)的结合,用于时间序列预测。这种组合模型充分利用了两种网络结构的优势,旨在提高时间序列预测的精度和效率。

首先,BiTCN通过卷积操作捕捉时间序列中的局部特征,同时其双向结构允许网络从前向和后向两个方向提取信息,从而更全面地理解数据。这种结构使得BiTCN能够学习到数据中的复杂模式和结构。

而BiLSTM则是一种特殊的循环神经网络,通过引入长短期记忆机制,能够处理长距离依赖关系,有效记住并利用历史信息。其双向结构则使得网络能够同时考虑前向和后向的上下文信息,从而进一步提高预测的准确性。

将BiTCN和BiLSTM结合,可以使得模型既能够捕捉到时间序列的局部特征,又能够处理长距离依赖关系,同时充分利用前后向的上下文信息。这种组合模型在时间序列预测中具有很大的潜力,可以应用于各种需要预测未来趋势的场景,如金融市场预测、气象预测、能源需求预测等。

需要注意的是,BiTCN-BiLSTM模型的训练和调优可能需要大量的数据和计算资源,并且需要对模型参数进行精细调整以优化性能。此外,对于不同的应用场景和数据集,可能需要设计不同的网络结构和参数设置来达到最佳的预测效果。

总的来说,BiTCN-BiLSTM是一种强大的时间序列预测模型,结合了卷积神经网络和循环神经网络的优点,具有广泛的应用前景。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab实现BiTCN-BiLSTM双向时间卷积神经网络结合双向长短期记忆神经网络时间序列预测 。
% 添加残差块到网络lgraph = addLayers(lgraph, layers);% 连接卷积层到残差块lgraph = connectLayers(lgraph, outputName, "conv1_" + i);% 创建 TCN反向支路flip网络结构Fliplayers = [FlipLayer("flip_" + i)                                                                                               % 反向翻转convolution1dLayer(1, numFilters, Name = "convSkip_"+i);                                                             % 反向残差连接convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv2_" + i)   % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化spatialDropoutLayer(dropoutFactor)                                                                                   % 空间丢弃层convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                      % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化reluLayer                                                                                                            % 激活层spatialDropoutLayer(dropoutFactor, Name="drop" + i)                                                                  % 空间丢弃层];% 添加 flip 网络结构到网络lgraph = addLayers(lgraph, Fliplayers);% 连接 flip 卷积层到残差块lgraph = connectLayers(lgraph, outputName, "flip_" + i);lgraph = connectLayers(lgraph, "drop" + i, "add_" + i + "/in3");lgraph = connectLayers(lgraph, "convSkip_"+i, "add_" + i + "/in4");% 残差连接 -- 首层if i == 1% 建立残差卷积层% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
end
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/758978.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP .Net Core ILogger日志服务

🐳简介 ILogger日志服务是.NET平台中的一个内置服务,主要用于应用程序的日志记录。它提供了灵活的日志记录机制,允许开发者在应用程序中轻松地添加日志功能。以下是其主要特点和组件: ILogger接口:这是ILogger日志服…

【Vue】三、使用ElementUI实现图片上传

目录 一、前端代码实现 二、后端代码实现 三、调试效果实现 一、前端代码实现 废话不多说直接上代码 <el-form-item prop"image" label"上传图片" v-model"form.image"><el-upload:action"http://localhost:8…

【C语言】循环语句(语句使用建议)

文章目录 **while循环****while循环的实践****补充:if语句与while语句区别****for循环(使用频率最高)****for循环的实践****while循环和for循环的对比****Do-while循环****break和continue语句****循环的嵌套****goto语句(不常用)****循环语句的效率(来自于高质量的C/C编程书籍…

nRF Sniffer在wireshark下的环境搭建

一、准备 nRF Sinffer 安装包&#xff1a; 直接下载&#xff1a;https://nsscprodmedia.blob.core.windows.net/prod/software-and-other-downloads/desktop-software/nrf-sniffer/sw/nrf_sniffer_for_bluetooth_le_4.1.1.zip 官网下载&#xff1a; nRF Sniffer for Bluetooth…

webpack中常见的Plugin?解决了什么问题?

一、是什么 Plugin&#xff08;Plug-in&#xff09;是一种计算机应用程序&#xff0c;它和主应用程序互相交互&#xff0c;以提供特定的功能 是一种遵循一定规范的应用程序接口编写出来的程序&#xff0c;只能运行在程序规定的系统下&#xff0c;因为其需要调用原纯净系统提供…

Flask学习(五):flask中添加装饰器

一、注意装饰器函数所在的位置&#xff1a; 代码示例如下&#xff1a; from flask import Flaskapp Flask(__name__)def wapper(func):def inner(*args, **kwargs):print("执行了装饰器")return func(*args, **kwargs)return innerwapper app.route("/index1…

CTF题型 匿名函数考法例题总结

CTF题型 匿名函数考法&例题总结 文章目录 CTF题型 匿名函数考法&例题总结一 .原理分析二 .重点匿名函数利用1.create_function()如何实现create_function代码注入 2.array_map()3.call_user_func()4.call_user_func_array()5.array_filter() 三.例题讲解1.[Polar 靶场 …

【WEB3安全基建项目Secwarex】空投指南

GoPlusSecurity是WEB3安全基建项目&#xff0c;3月8日完成400万美元的私募融资&#xff0c;目前总融资已经高达1500万美元&#xff0c;其中包括Binance Labs、Huobi Incubator、Kucoin Ventures、Avalanche等知名机构参投。 1、打开网址&#xff1a;secwarex.io&#xff0c;点…

【考研数学】武忠祥全年各阶段用书搭配

正常来说&#xff0c;你已经跟了武忠祥老师&#xff0c;那武老师的高数辅导讲义和严选题&#xff0c;应该你都有入手了&#xff0c;这个时候你再加一本1800&#xff0c;如何能够保证有充分的时间&#xff0c;将这些习题册做透&#xff0c;将它们的最大作用发挥出来呢&#xff0…

【C++】仿函数优先级队列反向迭代器

目录 一、优先级队列 1、priority_queue 的介绍 2、priority_queue 的使用 3、 priority_queue 的模拟实现 1&#xff09;priority_queue()/priority_queue(first, last) 2&#xff09;push&#xff08;x&#xff09; 3&#xff09;pop&#xff08;&#xff09; 4&#…

Vue+Element-UI Table表格实现复选框单选效果(隐藏表头上的全选Checkbox)

实现效果 完整代码 <div class"box-pos"><el-table ref"table" :header-cell-style"{ color: #FFF, background: #333 }":cell-style"{ color: #FFF, background: #333 }" :data"grListData" style"width: 1…

前端知识点03(JS)

文章目录 前端知识点03&#xff08;JS&#xff09;1、JS中this指向问题2、script中的async和defer的区别3、setTimeOut和setInterval4、Es6和ES5的区别5、ES6的新特性 &#x1f389;写在最后 前端知识点03&#xff08;JS&#xff09; hello hello~ &#xff0c;这里是 code袁~&…

python日常刷题(一)

前言&#xff1a;本文记录2024年3月11日至2024年3月19日牛客网所做的基础题目&#xff08;错题本&#xff09;&#xff1a; &#x1f3ac;个人简介&#xff1a;努力学习ing &#x1f4cb;本专栏&#xff1a;python日常刷题 &#x1f380;CSDN主页&#xff1a;愚润求学 文章目录…

软件的安装与卸载(YUM)

YUM&#xff1a;yum 是一个方便的"应用商店"&#xff0c;你可以通过它轻松地安装、更新和删除软件包&#xff0c;就像从应用商店中下载和安装应用程序一样。&#xff08;这个得用root身份&#xff0c;普通用户权限不够&#xff09; 常用命令&#xff1a; 1.安装软件…

7.安全性基础知识

主要议题&#xff1a; 安全防护体系&#xff1a;7层次&#xff0c;要记7层次的名称以及这些层次与哪些方面相关&#xff1b; 安全保护等级&#xff1a;5等级&#xff0c;要记5等级安全性的高低排序&#xff0c;掌握每个等级的特点&#xff1b; 用户认证机制&#xff1a;用户认…

python网络爬虫实战教学——urllib的使用(2)

文章目录 专栏导读1、前言2、URLError3、HTTPError4、urlparse5、urlunparse 专栏导读 ✍ 作者简介&#xff1a;i阿极&#xff0c;CSDN 数据分析领域优质创作者&#xff0c;专注于分享python数据分析领域知识。 ✍ 本文录入于《python网络爬虫实战教学》&#xff0c;本专栏针对…

第1章 数据管理

思维导图 1.1 引言 从数据中获取的价值不可能凭空产生或依赖于偶然&#xff0c;需要有目标、规划、协作、和保障&#xff0c;也需要管理和领导力。定义&#xff1a; 数据管理是为了交付、控制、保护并提升数据和信息资产的价值&#xff0c;在其整个生命周期中制定计划、制度、…

【Web】浅聊Hessian反序列化原生jdk利用与高版本限制绕过

目录 前言 原理分析 EXP Hessian2 低版本 直接Runtime命令执行 Hessian2 高版本 利用Unsafe加载恶意字节码二次调用触发初始化 利用TemplatesImpl实例化恶意类 jdk高版本打JNDI 前文&#xff1a;【Web】浅聊Hessian异常toString姿势学习&复现 前言 上篇文章介绍…

mysql笔记:23. 在Mac上安装与卸载MySQL

文章目录 下载MySQL安装包1. 打开MySQL官网&#xff0c;点击DOWNLOADS2. 点击GPL Downloads3. 点击MySQL Community Server打开下载页面4. 选择需要的文件进行下载5. ARM or x86 DMGbrewTAR卸载1. 在系统中卸载2. 在终端中卸载 MySQL对Mac电脑的适配十分强大&#xff0c;再加上…

Oracle with as用法

一、简介 with…as关键字&#xff0c;是以‘with’关键字开头的sql语句&#xff0c;在实际工作中&#xff0c;我们经常会遇到同一个查询sql会同时查询多个相同的结果集&#xff0c;即sql一模一样&#xff0c;这时候我们可以将这些相同的sql抽取出来&#xff0c;使用with…as定…