在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算。
以下是一个使用TensorFlow.NET的示例:
using System;
using TensorFlow;
using TensorFlow.Image;class Program
{static void Main(string[] args){// 载入模型var model = new ResNet50();// 加载图像var image1 = ImageUtil.LoadTensorFromImageFile("image1.jpg");var image2 = ImageUtil.LoadTensorFromImageFile("image2.jpg");// 提取特征var feature1 = ExtractFeatures(image1, model);var feature2 = ExtractFeatures(image2, model);// 计算相似度var similarityScore = CalculateSimilarity(feature1, feature2);Console.WriteLine("图片相似度: " + similarityScore);}static TFTensor ExtractFeatures(TFTensor image, ResNet50 model){// 预处理图像var processedImage = ImageUtil.ResizeAndCropCenter(image, model.InputHeight, model.InputWidth);processedImage = ImageUtil.Normalize(image, mean: model.Mean, std: model.Std);// 转换图像形状以匹配模型输入var reshapedImage = processedImage.Reshape(new long[] { 1, model.InputHeight, model.InputWidth, 3 });// 获取特征var features = model.Predict(reshapedImage);return features;}static double CalculateSimilarity(TFTensor feature1, TFTensor feature2){// 使用余弦相似度计算特征之间的相似度var similarity = CosineSimilarity(feature1.ToArray<float>(), feature2.ToArray<float>());return similarity;}static double CosineSimilarity(float[] vector1, float[] vector2){double dotProduct = 0.0;double magnitude1 = 0.0;double magnitude2 = 0.0;for (int i = 0; i < vector1.Length; i++){dotProduct += vector1[i] * vector2[i];magnitude1 += Math.Pow(vector1[i], 2);magnitude2 += Math.Pow(vector2[i], 2);}magnitude1 = Math.Sqrt(magnitude1);magnitude2 = Math.Sqrt(magnitude2);return dotProduct / (magnitude1 * magnitude2);}
}
在这个示例中,我们使用了TensorFlow.NET库中的ResNet50模型来提取图像的特征表示。我们首先载入模型,然后加载图片并对其进行预处理,接着提取特征,并最后使用余弦相似度计算图片的相似度。
请确保在项目中包含了TensorFlow.NET的引用,并根据实际情况修改图片的路径以及模型的输入参数。
使用Python实现了同样的逻辑,可以对比 参考
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input
from sklearn.metrics.pairwise import cosine_similarity# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet', include_top=False, pooling='avg')# 加载并预处理图像
def preprocess_image(img_path):img = image.load_img(img_path, target_size=(224, 224))x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)return x# 提取图像的特征向量
def extract_features(img_path, model):img = preprocess_image(img_path)features = model.predict(img)return features.flatten()# 图像路径
image1_path = '/Users/AI/pythonsamples-main/ML/CNN(卷积神经网络)/ImageVector/houge.jpg'
image2_path = '/Users/AI/pythonsamples-main/ML/CNN(卷积神经网络)/ImageVector/zhipiao.jpg'# 提取特征向量
features1 = extract_features(image1_path, model)
features2 = extract_features(image2_path, model)# 计算余弦相似度
similarity = cosine_similarity([features1], [features2])[0][0]
print("相似度:", similarity)
结果: