NVIDIA NIM 提供优化的推理微服务以大规模部署 AI 模型

NVIDIA NIM 提供优化的推理微服务以大规模部署 AI 模型

生成式人工智能的采用率显着上升。 在 2022 年 OpenAI ChatGPT 推出的推动下,这项新技术在几个月内就积累了超过 1 亿用户,并推动了几乎所有行业的开发活动激增。

到 2023 年,开发人员开始使用来自 Meta、Mistral、Stability 等的 API 和开源社区模型进行 POC。

进入 2024 年,组织将重点转向全面生产部署,其中涉及将 AI 模型连接到现有企业基础设施、优化系统延迟和吞吐量、日志记录、监控和安全性等。 这条生产之路既复杂又耗时——它需要专门的技能、平台和流程,尤其是大规模生产。

NVIDIA NIM 是 NVIDIA AI Enterprise 的一部分,为开发 AI 驱动的企业应用程序和在生产中部署 AI 模型提供了简化的路径。

NIM 是一组优化的云原生微服务,旨在缩短上市时间并简化生成式 AI 模型在云、数据中心和 GPU 加速工作站上的部署。 它通过使用行业标准 API 抽象化 AI 模型开发和生产打包的复杂性来扩展开发人员库。

用于优化 AI 推理的 NVIDIA NIM

NVIDIA NIM 旨在弥合复杂的 AI 开发世界与企业环境运营需求之间的差距,使企业应用程序开发人员能够为公司的 AI 转型做出 10-100 倍的贡献。

部署在任何地方

NIM 专为可移植性和控制而构建,支持跨各种基础设施(从本地工作站到云再到本地数据中心)进行模型部署。 其中包括 NVIDIA DGX、NVIDIA DGX Cloud、NVIDIA 认证系统、NVIDIA RTX 工作站和 PC。

预构建的容器和 Helm 图表与优化模型打包在一起,在不同的 NVIDIA 硬件平台、云服务提供商和 Kubernetes 发行版上进行了严格的验证和基准测试。 这可以为所有 NVIDIA 支持的环境提供支持,并确保组织可以在任何地方部署其生成式 AI 应用程序,从而保持对其应用程序及其处理的数据的完全控制。

使用行业标准 API 进行开发

开发者可以通过符合各领域行业标准的API访问AI模型,简化AI应用的开发。 这些 API 与生态系统内的标准部署流程兼容,使开发人员能够快速更新他们的人工智能应用程序——通常只需三行代码。 这种无缝集成和易用性有助于在企业环境中快速部署和扩展人工智能解决方案。

利用特定领域的模型

NIM 还通过几个关键功能满足对特定领域解决方案和优化性能的需求。 它打包了特定于领域的 NVIDIA CUDA 库以及针对语言、语音、视频处理、医疗保健等各个领域量身定制的专用代码。 这种方法可确保应用程序准确且与其特定用例相关。

在优化的推理引擎上运行

NIM 针对每个模型和硬件设置利用优化的推理引擎,在加速基础设施上提供最佳的延迟和吞吐量。 这降低了推理工作负载扩展时运行的成本,并改善了最终用户体验。 除了支持优化的社区模型之外,开发人员还可以通过将模型与永不离开数据中心边界的专有数据源进行对齐和微调,从而获得更高的准确性和性能。

支持企业级人工智能

NIM 是 NVIDIA AI Enterprise 的一部分,采用企业级基础容器构建,通过功能分支、严格验证、服务级别协议的企业支持以及 CVE 的定期安全更新,为企业 AI 软件提供坚实的基础。 全面的支持结构和优化能力强调了 NIM 作为在生产中部署高效、可扩展和定制的 AI 应用程序的关键工具的作用。

加速的 AI 模型已准备好部署

NIM 支持多种 AI 模型,例如社区模型、NVIDIA AI Foundation 模型以及 NVIDIA 合作伙伴提供的自定义 AI 模型,支持跨多个领域的 AI 用例。 这包括大型语言模型 (LLM)、视觉语言模型 (VLM) 以及语音、图像、视频、3D、药物发现、医学成像等模型。

开发人员可以使用 NVIDIA API 目录中的 NVIDIA 托管云 API 来测试最新的生成式 AI 模型。 或者,他们可以通过下载 NIM 自行托管模型,并使用 Kubernetes 在主要云提供商或本地进行快速部署以进行生产,从而缩短开发时间、复杂性和成本。

NIM 微服务通过打包算法、系统和运行时优化以及添加行业标准 API 来简化 AI 模型部署过程。 这使得开发人员能够将 NIM 集成到他们现有的应用程序和基础设施中,而无需进行大量的定制或专业知识。

使用 NIM,企业可以优化其 AI 基础设施,以实现最大效率和成本效益,而无需担心 AI 模型开发复杂性和容器化。 除了加速的 AI 基础设施之外,NIM 还有助于提高性能和可扩展性,同时降低硬件和运营成本。

对于希望为企业应用程序定制模型的企业,NVIDIA 提供了跨不同领域的模型定制微服务。 NVIDIA NeMo 使用法学硕士、语音 AI 和多模式模型的专有数据提供微调功能。 NVIDIA BioNeMo 通过不断增加的生成生物化学和分子预测模型来加速药物发现。 NVIDIA Picasso 通过 Edify 模型实现更快的创意工作流程。 这些模型在视觉内容提供商的许可库上进行训练,从而能够部署用于视觉内容创建的定制生成人工智能模型。

NVIDIA NIM 入门

NVIDIA NIM 的入门非常简单明了。 在 NVIDIA API 目录中,开发人员可以访问各种 AI 模型,这些模型可用于构建和部署自己的 AI 应用程序。

使用图形用户界面直接在目录中开始原型设计,或直接与免费的 API 交互。 要在您的基础设施上部署微服务,只需注册 NVIDIA AI Enterprise 90 天评估许可证并按照以下步骤操作即可。

  1. 从 NVIDIA NGC 下载您要部署的模型。 在此示例中,我们将下载为单个 A100 GPU 构建的 Llama-2 7B 模型版本。
ngc registry model download-version "ohlfw0olaadg/ea-participants/llama-2-7b:LLAMA-2-7B-4K-FP16-1-A100.24.01"

如果您有不同的 GPU,您可以使用 ngc 注册表模型列表“ohlfw0olaadg/ea-participants/llama-2-7b:*”列出模型的可用版本

  1. 将下载的工件解压到模型存储库中:
tar -xzf llama-2-7b_vLLAMA-2-7B-4K-FP16-1-A100.24.01/LLAMA-2-7B-4K-FP16-1-A100.24.01.tar.gz
  1. 使用您所需的模型启动 NIM 容器:
docker run --gpus all --shm-size 1G -v $(pwd)/model-store:/model-store --net=host nvcr.io/ohlfw0olaadg/ea-participants/nemollm-inference-ms:24.01 nemollm_inference_ms --model llama-2-7b --num_gpus=1
  1. 部署 NIM 后,您可以开始使用标准 REST API 发出请求:
import requestsendpoint = 'http://localhost:9999/v1/completions'headers = {'accept': 'application/json','Content-Type': 'application/json'
}data = {'model': 'llama-2-7b','prompt': "The capital of France is called",'max_tokens': 100,'temperature': 0.7,'n': 1,'stream': False,'stop': 'string','frequency_penalty': 0.0
}response = requests.post(endpoint, headers=headers, json=data)
print(response.json())

NVIDIA NIM 是一款强大的工具,可帮助组织加速生产 AI 之旅。 立即开始您的人工智能之旅。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/756744.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Covalent Network(CQT)借助最大规模的历史与实时 Web3 数据集,推动人工智能的发展

人工智能在众多领域中增强了区块链的实用性,反之亦然,区块链确保了 AI 模型所使用的数据的来源和质量。人工智能带来的生产力提升,将与区块链系统固有的安全性和透明度融合。 Covalent Network(CQT)正位于这两项互补技…

HarmonyOS NEXT应用开发之Navigation实现多设备适配案例

介绍 在应用开发时,一个应用需要适配多终端的设备,使用Navigation的mode属性来实现一套代码,多终端适配。 效果图预览 使用说明 将程序运行在折叠屏手机或者平板上观看适配效果。 实现思路 本例涉及的关键特性和实现方案如下&#xff1a…

backtrader回测股票:突破20日均线买入,跌破20日均线卖出

数据源:akshare 回测工具:backtrader 策略:突破20日均线买入,跌破20日均线卖出 代码: from datetime import datetime import backtrader as bt #1.9.78.123 import matplotlib.pyplot as plt #3.8.3 import aks…

数据库只追求性能是不够的!

那些成功的数据库公司没有一家是通过性能比竞争对手更快而成功的。 作者:JORDAN TIGANI,DuckDB 公司 MotherDuck 联合创始人&CEO 本文和封面来源:https://motherduck.com/,爱可生开源社区翻译。 本文约 4500 字,预…

论文阅读之AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

文章目录 原文链接主要内容模型图技术细节实验结果 原文链接 AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE 主要内容 这篇文章的主要内容是介绍了一种新的计算机视觉模型——Vision Transformer(ViT),这是…

自然语言处理学习总结

目录 1、词表示 2、语言模型(LM) 3、常用学习网址 自然语言处理 1、词表示 词表示:自然语言中最基本的语言单位表示成机器理解的方式 方式一:词与词之间的相似度 方式二:词与词之间的关系 词义的表示方法&…

云手机在海外电商中的应用优势

随着海外市场的不断拓展,电商行业对于高效、安全的工具需求日益增长。在这一背景下,云手机作为一种新型服务,为海外电商提供了强大的支持和便利。云手机对传统物理手机起到了非常好的延展和补充作用,拓展了更广泛的应用场景&#…

RabbitMQ问题

如何实现顺序消费? 消息放入到同一个队列中消费 如何解决消息不丢失? 方案: 如上图:消息丢失有三种情况,解决了以上三种情况就解决了丢失的问题 1、丢失1--->消息在到达交换机的时候;解决&#xff1…

原生html vue3使用element plus 的树tree上移下移案例源码

上效果 html源码 <!DOCTYPE html> <html lang"en"> <!-- * Name: mallSalesReports.html * Description: * Author Lani * date 2024-02-28 18:32:36 --> <head><meta charset"UTF-8"><meta name"viewport" …

docker入门(五)—— 小练习,docker安装nginx、elasticsearch

练习 docker 安装 nginx # 搜素镜像 [rootiZbp15293q8kgzhur7n6kvZ home]# docker search nginx NAME DESCRIPTION STARS OFFICIAL nginx …

【Postrsql】postgresql的介绍、安装和使用

介绍 1.基本信息 PostgreSQL是一个功能强大的开源关系型数据库系统。经过长达15年以上的积极开发和不断改进&#xff0c;PostgreSQL已在可靠性、稳定性、数据一致性等获得了业内极高的声誉。目前PostgreSQL可以运行在所有主流操作系统上&#xff0c;包括Linux、Unix和Windows…

html5cssjs代码 024 响应式布局示例

html5&css&js代码 024 响应式布局示例 一、代码二、解释 该HTML代码重点在于构建一个带有响应式设计的两栏布局网页&#xff0c;包含页头、导航条、主要内容区&#xff08;左右两列&#xff09;和底部区域&#xff0c;并运用CSS样式设置页面元素的布局、颜色、字体、间…

【Node.js从基础到高级运用】十五、单元测试与集成测试

引言 在Node.js开发过程中&#xff0c;测试是确保代码质量和功能正确性的关键步骤。单元测试和集成测试是最常见的测试类型。下面我们将使用Jest框架来进行测试。 单元测试 单元测试是指对软件中的最小可测试单元进行检查和验证。在Node.js中&#xff0c;这通常指的是函数或者…

HarmonyOS开发:超详细介绍如何开源静态共享包,实现远程依赖

前言 当我们开发了一个独立的功能&#xff0c;想让他人进行使用&#xff0c;一般的方式就是开源出去&#xff0c;有源码的方式&#xff0c;也有文件包的形式&#xff0c;当然了也有远程依赖的方式&#xff0c;比如在Android中&#xff0c;我们可以提供源码&#xff0c;也可以打…

SQLiteC/C++接口详细介绍sqlite3_stmt类(一)

返回目录&#xff1a;SQLite—免费开源数据库系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类简介 下一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;二&#xff09; ​ 序言&#xff1a; 本文开始了SQLite的第二个类的详细介绍…

Qt 容器类控件

Group Box 使用 QGroupBox 实现一个带有标题的分组框可以把其他的控件放到里面作为一组&#xff0c;这样看起来能更好看一点. 核心属性 属性说明title分组框的标题alignment分组框内部内容的对齐方式flat是否是 “扁平” 模式checkable是否可选择. 设为 true&#xff0c;则在…

鸿蒙Harmony应用开发—ArkTS-高级组件:@ohos.advertising.AdComponent (非全屏广告展示组件))

本模块提供展示非全屏广告的能力。 说明&#xff1a; 本模块首批接口从API Version 11开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 导入模块 import { AdComponent } from ohos.advertising.AdComponent; AdComponent AdComponent(ads: Ar…

webpack5零基础入门-12搭建开发服务器

1.目的 每次写完代码都需要手动输入指令才能编译代码&#xff0c;太麻烦了&#xff0c;我们希望一切自动化 2.安装相关包 npm install --save-dev webpack-dev-server 3.添加配置 在webpack.config.js中添加devServer相关配置 /**开发服务器 */devServer: {host: localhos…

华为中心AP 配置入侵防御实验

配置入侵防御示例 组网图形 图1 入侵防御组网图 组网需求配置思路操作步骤中心AP的配置文件 组网需求 如图1所示&#xff0c;某企业部署了WLAN网络&#xff0c;内网用户可以访问Internet的Web服务器。现需要在中心AP上配置入侵防御功能&#xff0c;具体要求如下&#xff1a; 保…

Bert的一些理解

Bert的一些理解 Masked Language Model (MLM)Next Sentence Prediction (NSP)总结 参考链接1 参考链接2 BERT 模型的训练数据集通常是以预训练任务的形式来构建的&#xff0c;其中包括两个主要任务&#xff1a;Masked Language Model (MLM) 和 Next Sentence Prediction (NSP)。…