三刷day28
- 93.复原IP地址
- 判断子串是否合法
- 78.子集
- 回溯三部曲
- 90.子集II
93.复原IP地址
题目链接
解题思路: 切割问题就可以使用回溯搜索法把所有可能性搜出来
回溯三部曲
- 递归参数
startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。
本题我们还需要一个变量pointNum,记录添加逗点的数量。
所以代码如下:
vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {
- 递归终止条件
终止条件和131.分割回文串
情况就不同了,本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。
pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里
代码如下:
if (pointNum == 3) { // 逗点数量为3时,分隔结束// 判断第四段子字符串是否合法,如果合法就放进result中if (isValid(s, startIndex, s.size() - 1)) {result.push_back(s);}return;
}
- 单层搜索的逻辑
在131.分割回文串中已经讲过在循环遍历中如何截取子串。
在for (int i = startIndex; i < s.size(); i++)
循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.
表示已经分割。
如果不合法就结束本层循环,如图中剪掉的分支:
然后就是递归和回溯的过程:
递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.
),同时记录分割符的数量pointNum 要 +1。
回溯的时候,就将刚刚加入的分隔符.
删掉就可以了,pointNum也要-1。
代码如下:
for (int i = startIndex; i < s.size(); i++) {if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点pointNum++;backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2pointNum--; // 回溯s.erase(s.begin() + i + 1); // 回溯删掉逗点} else break; // 不合法,直接结束本层循环
}
判断子串是否合法
最后就是在写一个判断段位是否是有效段位了。
主要考虑到如下三点:
- 段位以0为开头的数字不合法
- 段位里有非正整数字符不合法
- 段位如果大于255了不合法
代码如下:
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s, int start, int end) {if (start > end) {return false;}if (s[start] == '0' && start != end) { // 0开头的数字不合法return false;}int num = 0;for (int i = start; i <= end; i++) {if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法return false;}num = num * 10 + (s[i] - '0');if (num > 255) { // 如果大于255了不合法return false;}}return true;
}
可以写出如下回溯算法C++代码:
class Solution {
private:vector<string> result;// 记录结果// startIndex: 搜索的起始位置,pointNum:添加逗点的数量void backtracking(string& s, int startIndex, int pointNum) {if (pointNum == 3) { // 逗点数量为3时,分隔结束// 判断第四段子字符串是否合法,如果合法就放进result中if (isValid(s, startIndex, s.size() - 1)) {result.push_back(s);}return;}for (int i = startIndex; i < s.size(); i++) {if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点pointNum++;backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2pointNum--; // 回溯s.erase(s.begin() + i + 1); // 回溯删掉逗点} else break; // 不合法,直接结束本层循环}}// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法bool isValid(const string& s, int start, int end) {if (start > end) {return false;}if (s[start] == '0' && start != end) { // 0开头的数字不合法return false;}int num = 0;for (int i = start; i <= end; i++) {if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法return false;}num = num * 10 + (s[i] - '0');if (num > 255) { // 如果大于255了不合法return false;}}return true;}
public:vector<string> restoreIpAddresses(string s) {result.clear();if (s.size() < 4 || s.size() > 12) return result; // 算是剪枝了backtracking(s, 0, 0);return result;}
};
78.子集
题目链接
解题思路:
从图中红线部分,可以看出 遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
回溯三部曲
- 递归函数参数
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
- 递归终止条件
从图中可以看出:
剩余集合为空的时候,就是叶子节点。
那么什么时候剩余集合为空呢?
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
if (startIndex >= nums.size()) {return;
}
其实可以不需要加终止条件,因为startIndex >= nums.size()
,本层for循环本来也结束了。
- 单层搜索逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
那么单层递归逻辑代码如下:
for (int i = startIndex; i < nums.size(); i++) {path.push_back(nums[i]); // 子集收集元素backtracking(nums, i + 1); // 注意从i+1开始,元素不重复取path.pop_back(); // 回溯
}
可以写出如下回溯算法C++代码:
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己if (startIndex >= nums.size()) { // 终止条件可以不加return;}for (int i = startIndex; i < nums.size(); i++) {path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> subsets(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};
90.子集II
题目链接
解题思路:
代码如下:
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {result.push_back(path);for (int i = startIndex; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过// used[i - 1] == false,说明同一树层candidates[i - 1]使用过// 而我们要对同一树层使用过的元素进行跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}path.push_back(nums[i]);used[i] = true;backtracking(nums, i + 1, used);used[i] = false;path.pop_back();}}public:vector<vector<int>> subsetsWithDup(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);sort(nums.begin(), nums.end()); // 去重需要排序backtracking(nums, 0, used);return result;}
};