【C++】手撕AVL树

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c++,Python等
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:能直接手撕AVL树。

> 毒鸡汤:放弃自己,相信别人,这就是失败的原因。

> 望小伙伴们点赞👍收藏✨加关注哟💕💕 

🌟前言  

相信大家肯定听过在C++大名鼎鼎的两颗树,这两颗树分别是AVL树和红黑树,学过的小伙伴听到都是瑟瑟发抖,像一些大厂中可能会考手撕AVL树或红黑树。学习这两棵树确实难度很大,正所谓难度越大动力就越大,那本篇我们学习这两棵树的一颗树--AVL树。

⭐主体

学习AVL树咱们按照下面的图解:

🌙AVL树的概念

在计算机科学中,AVL树是最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是O(logn)。

AVL树的定义

  • 一棵空的树是AVL树
  • 如果T是一棵非空的二叉树,T(L)和T(R)分别是其左子树高和右子树高,那么当T满足以下条件时,T是一棵AVL树,|h(L)-h(R)|<=1,其中h(L)和h(R)分别是T(L)和T(R)的高(简称平衡因子)

AVL树的状态:

AVL树的特性:

  • 一棵n个元素的AVL树,其高度是O(logn)
  • 对于每一个n,n>=0,都存在一棵AVL树
  • 对一棵n元素的AVL搜索树,在O(高度)=O(logn)的时间内可以完成查找
  • 将一个新元素插入一棵n元素的AVL搜索树中,可以得到一棵n+1个元素的AVL树,而且插入用时为O(logn)
  • 一个元素从一棵n元素的AVL搜索树中删除,可以得到一棵n-1个元素的AVL树,而且删除用时为O(logn)

🌙AVL树的结点

  • 按照 KV 模型来构造 AVL 树,需要把结点定义为 三叉链结构(左、右、父)。
  • 构造函数,由于新构造结点的左右子树均为空树,所以将新构造结点的平衡因子初始设置为 0 。

代码示例:

// 创建AVL树的结点
template<class K,class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;  // 左子树AVLTreeNode<K, V>* _right; // 右子树AVLTreeNode<K, V>* _parent;// 父亲结点pair<K, V> _kv; // 存储的键值对int _bf;       // 平衡因子(右子树高度 - 左子树高度)// 构造函数AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};

🌙AVL树的插入

其实AVL树插入操作,本质上比二叉搜索树的插入操作多了一个平衡操作

  1. 按照二叉搜索树的方式,找到待插入的位置,然后将新结点插入到该位置。
  2. 调整节点的平衡因子,如果出现不平衡,则需要进行旋转。

当 AVL 树插入一个新结点以后,需要更新插入结点的祖先的平衡因子,因为新结点(也就是叶子结点)的平衡因子为 0,但是它影响的是它的父亲,它父亲的父亲…,所以要更新到祖先结点。

上面的图就需要改变父亲爷爷的平衡因子,我们知道,树的状态有很多,无法穷举,但是我们也有规律可寻,这个规律就在于我们的平衡因子,所以我总结如下:

  • 如果新增结点插入在 parent 的右边,只需要给 parent 的平衡因子 +1 即可
  • 如果新增结点插入在 parent 的左边,只需要给 parent 的平衡因子 -1 即可

当 parent 的平衡因子更新完以后,可能出现三种情况:0,正负 1,正负 2。

(1)parent 的平衡因子为 0

如果parent的平衡因子是0:说明之前parent的平衡因子是1或-1,说明之前parent一边高、一边低;这次插入之后填入矮的那边,parent所在的子树高度不变,不需要继续往上更新。如图:

(2)如果 parent 的平衡因子为正负 1

如果parent的平衡因子是1或者-1:说明之前parent的平衡因子是0,两边一样高,插入之后一边更高,parent所在的子树高度发生变化,继续往上更新

①parent为1

②parent为 -1

(3)如果 parent 的平衡因子为正负 2

平衡因子是2或-2,说明之前parent的平衡因子是1或-1,现在插入严重不平衡,违反规则,需要进行旋转处理

  • 如果parent的平衡因子是2,cur的平衡因子是1时,说明右边的右边比较高,我们需要进行左单旋
  • 如果parent的平衡因子是-2,cur的平衡因子是-1时,说明左边的左边比较高,我们需要进行右单旋
  • 如果parent的平衡因子是-2,cur的平衡因子是1时,我们需要进行左右双旋
  • 如果parent的平衡因子是2,cur的平衡因子是-1时,我们需要进行右左双旋

这里我们就举一个栗子:

代码实现:

public:// 插入函数bool Insert(const pair<K, V>& kv){// 如果AVL树是空树,把插入节点直接作为根节点if (_root == nullptr){_root = new Node(kv);_root->_bf = 0;return true;}// 1.按照二叉搜索树的规则插入Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first) // 待插入节点的key值大于当前节点的key值{// 往右子树走parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first) // 待插入节点的key值小于当前节点的key值{// 往左子树走parent = cur; cur = cur->_left;}else // 待插入节点的key值等于当前节点的key值{return false; // 插入失败,返回false}}// 2.当循环结束,说明cur找到了空的位置,那么就插入cur = new Node(kv); // 构造一个新节点if (parent->_kv.first < kv.first) // 如果新节点的key值大于当前parent节点的key值{// 就把新节点链接到parent的右边parent->_right = cur;}else // 如果新节点的key值小于当前parent节点的key值{// 就把新节点链接到parent的左边parent->_left = cur;}cur->_parent = parent; // 别忘了把新节点里面的_parent指向parent(因为我们定义的是一个三叉链)// 3.更新平衡因子,如果出现不平衡,则需要进行旋转while (parent) // 最远要更新到根节点去{if (cur == parent->_right) // 如果cur插在parent的右边,说明parent的右子树增高{parent->_bf++; // 那么parent的平衡因子要++}else // 如果cur插在parent的左边,说明parent的左子树增高{parent->_bf--; // 那么parent的平衡因子要--}// 判断是否更新结束,或者是否需要进行旋转if (parent->_bf == 0) // 如果parent的bf等于0,说明左右子树高度一致,就更新结束(原因是新插入的节点把parent左右子树中矮的那一边给填补了){// 高度不变,更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1) // 继续往上更新平衡因子(插入节点导致某一边变高了,说明parent所在的子树高度改变了){// 子树的高度变了,就要继续往上更新祖先cur = cur->_parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2) // 说明插入节点导致本来高的一边又变高了,子树不平衡了,那么此时需要做旋转处理{// 旋转的四种处理方式// 1.左单旋// 2.右单旋// 3.左右双旋// 4.右左双旋// 旋转完成,跳出break;}else{// 如果程序走到了这里,说明在插入节点之前AVL树就存在不平衡的子树,也就是存在平衡因子 >= 2的节点// 所以这里加一个断言进行处理assert(false);}}// 插入成功,返回truereturn true;}

🌙AVL树的旋转

在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,采用不同的旋转方法。

AVL树的旋转分为四种:

  • 左单旋(LL)
  • 右单旋(RR)
  • 左右双旋(LR)
  • 右左双旋(RL)

旋转规则:

  • 让这颗子树左右高度差不超过1
  • 旋转过程中继续保持它是搜索树
  • 更新调整孩子节点的平衡因子
  • 让这颗子树的高度根插入前保持一致

💫左单旋

左单旋的步骤如下:

  • 先让 subR 的左子树(subRL)作为 parent 的右子树。
  • 然后让 parent 作为 subR 的左子树。
  • 接下来让 subR 作为整个子树的根。
  • 最后更新平衡因子

我们就以下面的抽象图来看看左单旋如何实现:

代码示例:

// 左单旋(右边高需要左单旋)void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppNode = parent->_parent; // 先保存parent的parent// 1.建立parent和subRL之间的关系parent->_right = subRL;if (subRL) // 如果subRL节点不为空,那么要更新它的parent{subRL->_parent = parent;}// 2.建立subR和parent之间的关系subR->_left = parent;parent->_parent = subR;// 3.建立ppNode和subR之间的关系(分情况讨论parent是整颗树的根,还是局部子树)if (parent == _root) // 当parent是根节点时{_root = subR; // subR就变成了新的根节点_root->_parent = nullptr; // 根节点的的parent为空}else // 当parent是整个树的局部子树时{if (parent == ppNode->_left) // 如果parent在ppNode的左边{ppNode->_left = subR; // 那么subR就是parent的左子树}else // 如果parent在ppNode的右边{ppNode->_right = subR; // 那么subR就是parent的右子树}subR->_parent = ppNode; // subR的parent还要指向ppNode}// 更新平衡因子parent->_bf = 0;subR->_bf = 0;}

💫右单旋

右单旋的步骤如下:

  • 先让 subL 的右子树(subLR)作为 parent 的左子树。
  • 然后让 parent 作为 subL 的右子树。
  • 接下来让 subL 作为整个子树的根。
  • 最后更新平衡因子。

我们就以下面的抽象图来看看右单旋如何实现:

代码示例:

// 右单旋(左边高就右单旋)void RotateR(Node* parent){Node* subL = parent->_left; Node* subLR = subL->_right;Node* ppNode = parent->_parent;// 1.建立parent和subLR之间的关系parent->_left = subLR;if (subLR) // 如果subLR节点不为空,那么要更新它的parent{subLR->_parent = parent;}// 2.建立subL和parent之间的关系subL->_right = parent;parent->_parent = subL;// 3.建立ppNode和subL之间的关系(分情况讨论parent是整颗树的根,还是局部子树)if (parent == _root) // 当parent是根节点时{_root = subL; // subL就变成了新的根节点_root->_parent = nullptr; // 根节点的的parent为空}else // 当parent是整个树的局部子树时{if (parent == ppNode->_left) // 如果parent在ppNode的左边{ppNode->_left = subL; // 那么subL就是parent的左子树}else // 如果parent在ppNode的右边{ppNode->_right = subL; // 那么subL就是parent的右子树}subL->_parent = ppNode; // subR的parent还要指向ppNode}// 更新平衡因子parent->_bf = 0;subL->_bf = 0;}

💫左右单旋

左右单旋的步骤如下:

  • 先以 subL 为旋转点进行左单旋。
  • 然后以 parent 为旋转点进行右单旋。
  • 最后再更新平衡因子。

我们就以下面的抽象图来看看左右单旋如何实现:

再次分类讨论:

(1)当 subLR 原始平衡因子是 -1 时,左右双旋后 parent、subL、subLR 的平衡因子分别更新为 1、0、0

(2)当 subLR 原始平衡因子是 1 时,左右双旋后 parent、subL、subLR 的平衡因子分别更新为 0、-1、0

(3)当 subLR 原始平衡因子是 0 时(说明 subLR 为新增结点),左右双旋后 parent、subL、subLR 的平衡因子分别更新为0、0、0

代码示例:


// 左右双旋(先左单旋,再右单旋)void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;// 1.先以subL为旋转点进行左单旋RotateL(parent->_left);// 2.再以parent为旋转点进行右单旋RotateR(parent);// 3.更新平衡因子if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else{// 如果走到了这里,说明subLR的平衡因子在旋转前就有问题assert(false);}}

💫右左单旋

右左单旋的步骤如下:

  • 先以 subR 为旋转点进行右单旋。
  • 然后以 parent 为旋转点进行左单旋。
  • 最后再更新平衡因子。

我们就以下面的抽象图来看看右左单旋如何实现:

再次分类讨论:

(1)当 subRL 原始平衡因子是 1 时,左右双旋后 parent、subR、subRL 的平衡因子分别更新为 -1、0、0

(2)当 subRL 原始平衡因子是 -1 时,左右双旋后 parent、subR、subRL 的平衡因子分别更新为 0、1、0

(3)当 subRL 原始平衡因子是 0 时(说明 subRL为新增结点),左右双旋后 parent、subR、subRL 的平衡因子分别更新为0、0、0

代码示例:

// 右左双旋(先右单旋,再左单旋)void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;// 1.先以subR为旋转点进行右单旋RotateR(parent->_right);// 2.再以parent为旋转点进行左单旋RotateL(parent);// 3.更新平衡因子if (bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else{// 如果走到了这里,说明subRL的平衡因子在旋转前就有问题assert(false);}}

🌙AVL树的删除

这里的删除过于复杂,我这里就直接上代码了,如果对这里感兴趣的小伙伴们可以查阅资料。

// 删除函数bool Erase(const K& key){//用于遍历二叉树Node* parent = nullptr;Node* cur = _root;//用于标记实际的删除结点及其父结点Node* delParentPos = nullptr;Node* delPos = nullptr;while (cur){if (key < cur->_kv.first) //所给key值小于当前结点的key值{//往该结点的左子树走parent = cur;cur = cur->_left;}else if (key > cur->_kv.first) //所给key值大于当前结点的key值{//往该结点的右子树走parent = cur;cur = cur->_right;}else //找到了待删除结点{if (cur->_left == nullptr) //待删除结点的左子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_right; //让根结点的右子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else if (cur->_right == nullptr) //待删除结点的右子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_left; //让根结点的左子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else //待删除结点的左右子树均不为空{//替换法删除//寻找待删除结点右子树当中key值最小的结点作为实际删除结点Node* minParent = cur;Node* minRight = cur->_right;while (minRight->_left){minParent = minRight;minRight = minRight->_left;}cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的keycur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的valuedelParentPos = minParent; //标记实际删除结点的父结点delPos = minRight; //标记实际删除的结点break; //删除结点有祖先结点,需更新平衡因子}}}if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点{return false;}//记录待删除结点及其父结点(用于后续实际删除)Node* del = delPos;Node* delP = delParentPos;//更新平衡因子while (delPos != _root) //最坏一路更新到根结点{if (delPos == delParentPos->_left) //delParentPos的左子树高度降低{delParentPos->_bf++; //delParentPos的平衡因子++}else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低{delParentPos->_bf--; //delParentPos的平衡因子--}//判断是否更新结束或需要进行旋转if (delParentPos->_bf == 0)//需要继续往上更新平衡因子{//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;}else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束{break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子}else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了){if (delParentPos->_bf == -2){if (delParentPos->_left->_bf == -1){Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点}else if (delParentPos->_left->_bf == 1){Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点RotateLR(delParentPos); //左右双旋delParentPos = tmp; //更新根结点}else //delParentPos->_left->_bf == 0{Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = 1;delParentPos->_right->_bf = -1;break; //更正}}else //delParentPos->_bf == 2{if (delParentPos->_right->_bf == -1){Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点RotateRL(delParentPos); //右左双旋delParentPos = tmp; //更新根结点}else if (delParentPos->_right->_bf == 1){Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点}else //delParentPos->_right->_bf == 0{Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = -1;delParentPos->_left->_bf = 1;break; //更正}}//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;//break; //error}else{assert(false); //在删除前树的平衡因子就有问题}}//进行实际删除if (del->_left == nullptr) //实际删除结点的左子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_right;if (del->_right)del->_right->_parent = parent;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_right;if (del->_right)del->_right->_parent = parent;}}else //实际删除结点的右子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_left;if (del->_left)del->_left->_parent = parent;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_left;if (del->_left)del->_left->_parent = parent;}}delete del; //实际删除结点return true;}

🌙AVL树的遍历

中序是递归遍历(左  根  右),由于涉及到传参,所以需要写一个子函数。

代码实现:

	// 中序遍历void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left); // 走左cout << root->_kv.first << "[" << root->_bf << "]" << endl; // 遍历根_InOrder(root->_right); // 走右}void InOrder(){_InOrder(_root);}

🌙AVL树的查找

查找步骤:

  • 若 key 值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  • 若 key 值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  • 若 key 值等于当前结点的值,则查找成功,返回对应结点。

代码实现:

	// 查找元素Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}

🌙AVL树的高度

由于涉及到传参,所以需要写一个子函数。

代码实现:

	// 计算树的高度int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}int Height(){return _Height(_root);}

🌙AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分为下面两步:

(1)验证其为二叉搜索树

  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
​void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}​

(2)验证其为平衡树

  • 每个节点子树高度差的绝对值不超过 1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

🌙AVL树的高度

//求高度
int Height(Node* root){if (root == nullptr)return 0;int lh = Height(root->_left);int rh = Height(root->_right);return lh > rh ? lh + 1 : rh + 1;}
//判断平衡
bool IsBalance(Node* root){if (root == nullptr){return true;}int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(rightHeight - leftHeight) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);}

🌙AVL树优缺点

优点:

  • 平衡二叉树的优点不言而喻,相对于二叉排序树(BST)而言,平衡二叉树避免了二叉排序树可能出现的最极端情况(斜树)问题,其平均查找的时间复杂度为 O ( l o g N ) O(logN)O(logN)

缺点:

  • 平衡二叉树为了保持平衡,动态进行插入和删除操作的代价也会增加。因此出现了后来的红黑树

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1,这样可以保证查询时高效的时间复杂度,即O ( l o g N ) O(logN)O(logN)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

🌙整体代码

#include <iostream>
#include <assert.h>
#include<vector>
#include <time.h>
using namespace std;// 创建AVL树的结点
template<class K,class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;  // 左子树AVLTreeNode<K, V>* _right; // 右子树AVLTreeNode<K, V>* _parent;// 父亲结点pair<K, V> _kv; // 存储的键值对int _bf;       // 平衡因子(右子树高度 - 左子树高度)// 构造函数AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};template<class K,class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:// 插入元素bool Insert(const pair<K, V>& kv){if (_root == nullptr) // 如果没有结点{_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur) // 采用循环查找要插入的结点{if (cur->_kv.first < kv.first) // 插入的元素大于cur就走右子树{parent = cur;cur = cur->_right;}else if (cur->_kv.first < kv.first) // 插入的元素小于cur就走左子树{parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(kv);// 创建一个结点// 链接if (parent->_kv.first < kv.first)parent->_right = cur;elseparent->_left = cur;cur->_parent = parent;// 循环判断插入结点的平衡因子和AVL树是否正确while (parent){// 判断插入的节点在父亲的右边还是左边if (cur == parent->_left) // 在左边就父亲平衡因子减一parent->_bf--;else                     // 在右边就父亲平衡因子加一parent->_bf++;if (parent->_bf == 0) // 如果父亲的平衡因子为 0 该树就是健康的不用改变break;else if (parent->_bf == 1 || parent->_bf == -1) // 这时需要向上调整每个节点的平衡因子{cur = cur->_parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2) // 需要旋转处理{// 旋转处理if (parent->_bf == 2 && cur->_bf == 1) // 左单旋{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1) // 右单旋{RotateR(parent);}else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋{RotateLR(parent);}else  // 右左双旋 {RotateRL(parent);}break;}else{// 插入之前AVL树就有问题assert(false);}}}// 左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}parent->_bf = 0;subR->_bf = 0;}// 右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}subL->_bf = 0;parent->_bf = 0;}// 左右双旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == -1){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 1;}else if (bf == 1){subLR->_bf = 0;subL->_bf = -1;parent->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}}// 右左双旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);subRL->_bf = 0;if (bf == 1){subR->_bf = 0;parent->_bf = -1;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;}else{parent->_bf = 0;subR->_bf = 0;}}// 中序遍历void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left); // 走左cout << root->_kv.first << "[" << root->_bf << "]" << endl; // 遍历根_InOrder(root->_right); // 走右}void InOrder(){_InOrder(_root);}// 计算树的高度int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}int Height(){return _Height(_root);}// 判断是否平衡bool _IsBalance(Node* root, int& height){if (root == nullptr){height = 0;return true;}int leftHeight = 0, rightHeight = 0;if (!_IsBalance(root->_left, leftHeight)|| !_IsBalance(root->_right, rightHeight)){return false;}if (abs(rightHeight - leftHeight) >= 2){cout << root->_kv.first << "不平衡" << endl;return false;}if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}height = leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;return true;}bool IsBalance(){int height = 0;return _IsBalance(_root, height);}// 计算树的结点个数size_t _Size(Node* root){if (root == NULL)return 0;return _Size(root->_left)+ _Size(root->_right) + 1;}size_t Size(){return _Size(_root);}// 查找元素Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}// 删除函数bool Erase(const K& key){//用于遍历二叉树Node* parent = nullptr;Node* cur = _root;//用于标记实际的删除结点及其父结点Node* delParentPos = nullptr;Node* delPos = nullptr;while (cur){if (key < cur->_kv.first) //所给key值小于当前结点的key值{//往该结点的左子树走parent = cur;cur = cur->_left;}else if (key > cur->_kv.first) //所给key值大于当前结点的key值{//往该结点的右子树走parent = cur;cur = cur->_right;}else //找到了待删除结点{if (cur->_left == nullptr) //待删除结点的左子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_right; //让根结点的右子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else if (cur->_right == nullptr) //待删除结点的右子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_left; //让根结点的左子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else //待删除结点的左右子树均不为空{//替换法删除//寻找待删除结点右子树当中key值最小的结点作为实际删除结点Node* minParent = cur;Node* minRight = cur->_right;while (minRight->_left){minParent = minRight;minRight = minRight->_left;}cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的keycur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的valuedelParentPos = minParent; //标记实际删除结点的父结点delPos = minRight; //标记实际删除的结点break; //删除结点有祖先结点,需更新平衡因子}}}if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点{return false;}//记录待删除结点及其父结点(用于后续实际删除)Node* del = delPos;Node* delP = delParentPos;//更新平衡因子while (delPos != _root) //最坏一路更新到根结点{if (delPos == delParentPos->_left) //delParentPos的左子树高度降低{delParentPos->_bf++; //delParentPos的平衡因子++}else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低{delParentPos->_bf--; //delParentPos的平衡因子--}//判断是否更新结束或需要进行旋转if (delParentPos->_bf == 0)//需要继续往上更新平衡因子{//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;}else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束{break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子}else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了){if (delParentPos->_bf == -2){if (delParentPos->_left->_bf == -1){Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点}else if (delParentPos->_left->_bf == 1){Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点RotateLR(delParentPos); //左右双旋delParentPos = tmp; //更新根结点}else //delParentPos->_left->_bf == 0{Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = 1;delParentPos->_right->_bf = -1;break; //更正}}else //delParentPos->_bf == 2{if (delParentPos->_right->_bf == -1){Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点RotateRL(delParentPos); //右左双旋delParentPos = tmp; //更新根结点}else if (delParentPos->_right->_bf == 1){Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点}else //delParentPos->_right->_bf == 0{Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = -1;delParentPos->_left->_bf = 1;break; //更正}}//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;//break; //error}else{assert(false); //在删除前树的平衡因子就有问题}}//进行实际删除if (del->_left == nullptr) //实际删除结点的左子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_right;if (del->_right)del->_right->_parent = parent;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_right;if (del->_right)del->_right->_parent = parent;}}else //实际删除结点的右子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_left;if (del->_left)del->_left->_parent = parent;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_left;if (del->_left)del->_left->_parent = parent;}}delete del; //实际删除结点return true;}private:Node* _root = nullptr;
};void TestAVLTree1()
{//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };AVLTree<int, int> t;for (auto e : a){if (e == 14){int x = 0;}t.Insert(make_pair(e, e));cout << e << "->" << t.IsBalance() << endl;}t.InOrder();cout << t.IsBalance() << endl;
}void TestAVLTree2()
{const int N = 1000000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand() + i);//cout << v.back() << endl;}size_t begin2 = clock();AVLTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}size_t end2 = clock();cout << "Insert:" << end2 - begin2 << endl;cout << t.IsBalance() << endl;cout << "Height:" << t.Height() << endl;cout << "Size:" << t.Size() << endl;size_t begin1 = clock();// 确定在的值for (auto e : v){t.Find(e);}// 随机值for (size_t i = 0; i < N; i++){t.Find((rand() + i));}size_t end1 = clock();cout << "Find:" << end1 - begin1 << endl;
}

🌟结束语

       今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/755383.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数媒大厦会议中心 成都数字产业园示范基地

数媒大厦会议中心&#xff0c;位于成都市金牛区国际数字影像产业园3楼区域&#xff0c;这里也是成都数字产业园示范基地的核心区域。该成都文创产业园及辐射周边配套公园用地约500亩&#xff0c;涵盖产业实训空间、产业实验室、数字资产交易平台、产业集群发展空间、双创孵化空…

工业智能网关的功能特点、应用及其对企业产生的价值-天拓四方

一、工业智能网关的功能特点 工业智能网关是一种具备数据采集、传输、处理能力的智能设备&#xff0c;它能够将工业现场的各种传感器、执行器、控制器等设备连接起来&#xff0c;实现设备间的信息互通与协同工作。同时&#xff0c;工业智能网关还具备强大的数据处理能力&#…

PR是啥?一篇文章学会Pull Request到底是干嘛的

PR&#xff1f;Pull Request 概念 PR,全称Pull Request&#xff08;拉取请求&#xff09;&#xff0c;是一种非常重要的协作机制&#xff0c;它是 Git 和 GitHub 等代码托管平台中常见的功能。在开源项目中&#xff0c;Pull Request 被广泛用于参与社区贡献&#xff0c;从而促…

html--蝴蝶

<!DOCTYPE html> <html lang"en" > <head> <meta charset"UTF-8"> <title>蝴蝶飞舞</title> <link rel"stylesheet" href"https://cdnjs.cloudflare.com/ajax/libs/meyer-reset/2.0/reset.min.cs…

YOLOV5 改进:增加注意力机制模块(SE)

1、前言 本章将介绍yolov5的改进项目,为v5增加新的模块---注意力机制、SE模块 大部分更改的代码是重复的,只有少部分需要更改,下面会详细讲解 yolov5的yaml文件介绍:YOLOV5 模型:利用tensorboard查看网络结构和yaml文件介绍-CSDN博客 yolov5的模块更改,C3更改为C2f模块…

pgsql中按照逗号拆分成列

原始数据如下&#xff0c;要拆分dict_label字段&#xff1a; selectt_d.dict_sort,t_d.dict_label,t_d.dict_value from sys_dict_data t_d where t_d.dict_type qc_audit_type ORDER BY t_d.dict_sort 关键代码&#xff1a; split_part(t_d.dict_label,,,1) as mValue, sp…

递推算法C++

所谓递推&#xff0c;是指从已知的初始条件出发&#xff0c;依据某种递推关系&#xff0c;逐次推出所要求的各中间结果及最后结果。其中初始条件或是问题本身已经给定&#xff0c;或是通过对问题的分析与化简后确定。从已知条件出发逐步推到问题结果&#xff0c;此种方法叫顺推…

C++作业day6

编程1&#xff1a; 封装一个动物的基类&#xff0c;类中有私有成员&#xff1a;姓名&#xff0c;颜色&#xff0c;指针成员年纪 再封装一个狗这样类&#xff0c;共有继承于动物类&#xff0c;自己拓展的私有成员有&#xff1a;指针成员&#xff1a;腿的个数&#xff08;整型 …

从自动化到测开,测试人员逆袭之路从此起步!

在当今竞争激烈的软件测试行业中&#xff0c;近期的招聘市场确实面临一些挑战。大量的求职者争相涌入岗位&#xff0c;许多热衷于功能测试的人士甚至难以找到理想的工作机会。更不幸的是&#xff0c;连自动化测试和性能测试这些专业领域也受到了测试开发人员的竞争压力。然而&a…

stm32-模拟数字转化器ADC

接线图&#xff1a; #include "stm32f10x.h" // Device header//1: 开启RCC时钟&#xff0c;包括ADC和GPIO的时钟//2&#xff1a;配置GPIO将GPIO配置为模拟输入模式//3&#xff1a;配置多路开关将左边的通道接入到规则组中//4&#xff1a;配置ADC转…

北京市密云办理营业性演出许可所需材料及注意事项

尊敬的客户&#xff0c;您好&#xff01;我们是北京经典世纪集团有限公司&#xff0c;专注于资 质代办服务。在这篇文章中&#xff0c;我们将为您介绍一下在北京市密云地区办理营业性演出许可所需的材料及需要注意的事项。&#xff08;游览器搜经典世纪胡云帅&#xff09; 办理…

买堡垒机的企业主要目的是什么?哪家堡垒机好?

近几年企业越来越重视网络安全了&#xff0c;也越来越多的企业购买了堡垒机。但还有一些企业不知道堡垒机是什么&#xff0c;今天我们就来聊聊买堡垒机的企业主要目的是什么以及哪家堡垒机好。 买堡垒机的企业主要目的是什么&#xff1f; 一般买堡垒机的企业目的不外乎是这三个…

学习笔记Day11:初探Linux

Linux系统初探 Linux系统简介 发行版本Ubuntu/centOS&#xff0c;逻辑一样&#xff0c;都可以用。 服务器 本质是一台远程电脑&#xff0c;大多数服务器是Linux系统&#xff0c;通常使用命令行远程访问而不是桌面操作。LInux服务器允许多用户同时访问。NGS组学测序数据上游…

OSPF虚链路vlink

OSPF虚链路——vlink&#xff08;使得其他区域和骨干区域相连&#xff09; 虚链路&#xff1a;一定是跨越非骨干区域连接的 1、虚链路属于区域0的逻辑链路 2、虚链路只能穿越1个非骨干区域 3、虚链路不能穿越特殊区域&#xff1b; vlink在配置的时候&#xff0c;需要指对方…

后端工程师快速使用vue和Element

文章目录 Vue1 Vue概述2 快速入门3 Vue指令3.1 v-bind和v-model3.2 v-on3.3 v-if和v-show3.4 v-for3.5 案例 4 生命周期 Element快速使用1 Element介绍2 快速入门3 当前页面中嵌套另一个页面案例代码案例截图 Vue 1 Vue概述 通过我们学习的htmlcssjs已经能够开发美观的页面了…

XUbuntu22.04之自定义fd+rg极速命令组合(二百二十二)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

《探索AI辅助研发的未来之路》

在当今科技飞速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;已经逐渐渗透到各个领域&#xff0c;其中之一便是研发领域。AI辅助研发正以惊人的速度改变着我们对于创新和发现的理解。本文将从技术进展、行业应用、挑战与机遇、未来趋势、法规影响以及人才培养等方…

Vcenter 6.7部署文档

下载VMware-VCSA-all-6.7.0 iso文件 找到installer文件夹 ## 找到win32目录 点击installer 接下来按照截图一步步安装 开始进行安装 进度部署第二阶段 配置一个内部NTP 服务器 配置VCenter的登录用户名和密码 ## vcenter配置开始

适用于 Windows电脑的 iPad 数据恢复软件

如何在 Windows 11/10/8/7 上从 iPad 恢复丢失的数据&#xff1f;其实很简单。您只需在 Windows 11/10/8/7 上下载并安装 iPad 数据恢复软件。然后您可以运行该软件扫描您的 iPad 并查找已删除/丢失的数据。iPad 中的 iOS 数据&#xff08;包括消息、聊天记录、联系人、照片和视…

Vue学习日记 Day7 —— json-server工具、基于VueCli自定义创建项目、postcss插件

一、前一天Vuex总结 1、state作用&#xff1a;存放数据定义&#xff1a;state:{//数据 }使用&#xff1a;//放在data下(1)根节点直接访问this.$store.state.数据名(2)模块直接访问this.$store.state.模块名.数据名(3)根节点辅助函数mapState([所需要的数据])(4)模块辅助…