[c++]内存管理

1. C/C++内存分布

我们先来看下面的一段代码和相关问题

int globalVar = 1;

static int staticGlobalVar = 1;

void Test()

{ static int staticVar = 1;

int localVar = 1;

int num1[10] = { 1, 2, 3, 4 };

char char2[] = "abcd";

const char* pChar3 = "abcd";

int* ptr1 = (int*)malloc(sizeof(int) * 4);

int* ptr2 = (int*)calloc(4, sizeof(int));

int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);

free(ptr1); free(ptr3);

}

1. 选择题:

选项: A.栈  B.堆  C.数据段(静态区)  D.代码段(常量区)

globalVar在哪里?____   staticGlobalVar在哪里?____ staticVar在哪里?____  

localVar在哪里?____ num1 在哪里?____ char2在哪里?____  

pChar3在哪里?____       ptr1在哪里?____        

2. 填空题:

sizeof(num1) = ____;

sizeof(char2) = ____;       strlen(char2) = ____;

sizeof(pChar3) = ____;     strlen(pChar3) = ____;

sizeof(ptr1) = ____;

3. sizeof 和 strlen 区别?

C C  C A   A

A A A

40

5      4

4/8   4

4/8           先说一下答案吧

c和c++在内存分布上其实大体是一样的,我们之前学的栈(局部),堆(开空间),相当于重温一下之前c的知识点。

1.栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。

2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存,做进程间通信。(Linux)

3. 堆用于程序运行时动态内存分配,堆是可以上增长的。

4. 数据段--存储全局数据和静态数据。 5. 代码段--可执行的代码/只读常量。

2. C语言中动态内存管理方式

void Test ()

{ int* p1 = (int*) malloc(sizeof(int));

free(p1);

// 1.malloc/calloc/realloc的区别是什么?

int* p2 = (int*)calloc(4, sizeof (int));

int* p3 = (int*)realloc(p2, sizeof(int)*10);

// 这里需要free(p2)吗?

free(p3 );

}

p2其实要看情况释放,我们这里p3是p2的延续,我们申请的空间小,所以不需要释放,因为p3释放的时候p2就被一起释放了,如果我们p3realloc的空间比较大,需要异地扩容时,p2也会被拷贝到新的地址去,也是不需要我们去释放的,p3会把p2一块释放掉。

malloc/calloc/realloc区别总结

相同点:
1.都是从堆上申请空间
2.都需要对返回值判空
3.都需要用户free释放
4.返回值类型相同(void*)
5.都需要类型转化
6.底层实现上是一样的,都需要开辟多余的空间,用来维护申请的空间

不同点:
1.函数名字不同和参数类型不同。
2.calloc会对申请空间初始化,并且初始化为0,而其他两个不会。
3.malloc申请的空间必须使用memset初始化
4.realloc是对已经存在的空间进行调整,当第一个参数传入NULL的时候和malloc一样

3. C++中动态内存管理

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因 此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

new和delete其实跟我们原来的malloc和free差不多,也就是它两的封装函数

new/delete操作内置类型

void Test() {

// 动态申请一个int类型的空间

int* ptr4 = new int;

// 动态申请一个int类型的空间并初始化为10

int* ptr5 = new int(10);

// 动态申请10个int类型的空间

int* ptr6 = new int[3];

delete ptr4;

delete ptr5;

delete[] ptr6;

}

 注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],注意:匹配起来使用。

new和delete操作自定义类型

class A

{

public: A(int a = 0)

: _a(a)

{

cout << "A():" << this << endl;

}

~A()

{

cout << "~A():" << this << endl;

}

private:

int _a;

};

int main()

{

// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间 还会调用构造函数和析构函数

A* p1 = (A*)malloc(sizeof(A));

A* p2 = new A(1);

free(p1);

delete p2;

// 内置类型是几乎是一样的

int* p3 = (int*)malloc(sizeof(int)); // C

int* p4 = new int;

free(p3);

delete p4;

A* p5 = (A*)malloc(sizeof(A)*10);

A* p6 = new A[10];

free(p5);

delete[] p6;

return 0;

}

我们如果是new一个对象,然后用free去释放,可能当下不会报错,但有时它两的调用次数会有不同,就会造成内存泄漏的风险,而一个好的代码自然要避免这类问题,所以我们匹配使用会避免很多不必要的麻烦。

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与 free不会。 

4. operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是 系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过 operator delete全局函数来释放空间。

/* operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间 失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常 */

void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)

{

// try to allocate size bytes

void *p;

while ((p = malloc(size)) == 0)

if (_callnewh(size) == 0)    

{

// report no memory

// 如果申请内存失败了,这里会抛出bad_alloc 类型异常

static const std::bad_alloc nomem;

_RAISE(nomem);    

}

return (p);

}

/* operator delete: 该函数最终是通过free来释放空间的 */

void operator delete(void *pUserData)

{

_CrtMemBlockHeader * pHead;

RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));

if (pUserData == NULL) return;

_mlock(_HEAP_LOCK);  

/* block other threads */

__TRY

/* get a pointer to memory block header */

pHead = pHdr(pUserData);

/* verify block type */

_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));

_free_dbg( pUserData, pHead->nBlockUse );

__FINALLY

_munlock(_HEAP_LOCK);  

/* release other threads */

__END_TRY_FINALLY

return;

}

/* free的实现 */

#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果 malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施 就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。 

5. new和delete的实现原理

这里分为内置类型和自定义类型两种情况

内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申 请空间失败时会抛异常,malloc会返回NULL。

自定义类型

new的原理

1. 调用operator new函数申请空间

2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

1. 在空间上执行析构函数,完成对象中资源的清理工作

2. 调用operator delete函数释放对象的空间

new T[N]的原理

1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对 象空间的申请

2. 在申请的空间上执行N次构造函数

delete[]的原理

1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理

2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释 放空间

6. 定位new表达式(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用格式:

new (place_address) type或者new (place_address) type(initializer-list)

place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如 果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

class A

{

public:

A(int a = 0)

: _a(a)

{

cout << "A():" << this << endl;

}

~A()

{

cout << "~A():" << this << endl; private: int _a;

}

};

// 定位new/replacement new

int main()

{

// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没 有执行

A* p1 = (A*)malloc(sizeof(A));

new(p1)A;  

// 注意:如果A类的构造函数有参数时,此处需要传参

p1->~A();

free(p1);

A* p2 = (A*)operator new(sizeof(A));

new(p2)A(10);

p2->~A();

operator delete(p2);

return 0;

}

 malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。

不同的地方是:

1. malloc和free是函数,new和delete是操作符

2. malloc申请的空间不会初始化,new可以初始化

3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象,[]中指定对象个数即可

4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型

5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需 要捕获异常

6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new 在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

内存泄漏

什么是内存泄漏,内存泄漏的危害

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内 存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对 该段内存的控制,因而造成了内存的浪费。 内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现 内存泄漏会导致响应越来越慢,最终卡死。

void MemoryLeaks()

{

// 1.内存申请了忘记释放

int* p1 = (int*)malloc(sizeof(int));

int* p2 = new int;

// 2.异常安全问题

int* p3 = new int[10];

Func();

// 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.

delete[] p3;

}

内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

堆内存泄漏(Heap leak)

堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一 块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分 内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

系统资源泄漏

指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放 掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。 

如何检测内存泄漏

在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该 函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。

int main()

{

int* p = new int[10];

// 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏 _CrtDumpMemoryLeaks();

return 0;

}

// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置 Detected memory leaks! Dumping objects -> {79} normal block at 0x00EC5FB8, 40 bytes long. Data: <                 > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD Object dump complete.

因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜 防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时 一般都是借助第三方内存泄漏检测工具处理的。

如何避免内存泄漏

1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps: 这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智 能指针来管理才有保证。

2. 采用RAII思想或者智能指针来管理资源。

3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。

4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

总结一下: 内存泄漏非常常见,解决方案分为两种:

1、事前预防型。如智能指针等。

2、事后查错型。如泄 漏检测工具。 


本次分享就到这里啦!感谢观看,写得不好的地方还请指正!阿里嘎多~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/754921.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式事务的解决方案--Seata架构

一、Seata的XA模式 二、AT模式原理 三、TCC模式原理 四、MQ分布式事务 异步&#xff0c;非实时&#xff0c;实现最终的一致性。 四、分布式事务的解决方案

Stable Diffusion WebUI 生成参数:宽度/高度/生成批次/每批数量/提示词相关性/随机种子

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 大家好&#xff0c;我是水滴~~ 本文将继续了解 Stable Diffusion WebUI 的生成参数&#xff0c;主要内容有&#xff1a;宽度、高度、生成批次、每批数量、提示词相关性、随机种子。希望能对你…

Visual Studio 2022下配置 OpenMP 多线程编程环境与运行

目录 一创建项目时选择“创建新项目 -> 空项目 -> 下一步 -> 创建” 二右键“源文件 -> 添加 -> 新建项 -> 添加” 三配置 1. 测试程序&#xff1a; 最开始的时候错误很多&#xff1a; 2.将 “ include "stdafx.h" ” 删掉&#xff0c;添加 “…

电影院售票网站|基于SSM框架+ Mysql+Java+ B/S结构的电影院售票网站设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java&#xff0c;ssm&#xff0c;springboot的平台设计与实现项目系统开发资源&#xff08;可…

操作系统知识-存储管理+文件管理管理-嵌入式系统设计师备考笔记

0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记&#xff0c;未经本人许可&#xff0c;请勿转载&#xff0c;如发现本笔记内容的错误还望各位不吝赐教&#xff08;笔记内容可能有误怕产生错误引导&#xff09;。 本章的主要内容见下图&#xff1a; 1、存储管理&#…

【算法与数据结构】二叉树(前中后)序遍历

文章目录 &#x1f4dd;前言&#x1f320; 创建简单二叉树&#x1f309;二叉树的三种遍历&#x1f320;前序&#x1f309;中序遍历 &#x1f320;后序遍历 &#x1f320;二叉树节点个数&#x1f309;二叉树节点个数注意点 &#x1f6a9;总结 &#x1f4dd;前言 一棵二叉树是结…

linux常用指令

前言 大家好我是jiantaoyab&#xff0c;这篇文章给大家介绍Linux下常用的命令。 指令的本质也是Linux上的一些程序。 cd cd - 回到最近从哪来的路径 cd ~ 当前用户对应的工作目录&#xff08;普通用户&#xff1a;/home/xx root用户&#xff1a;/root&#xff09; cd / 去…

【vscode】vscode重命名变量后多了很多空白行

这种情况&#xff0c;一般出现在重新安装 vscode 后出现。 原因大概率是语言服务器没设置好或设置对。 以 Python 为例&#xff0c;到设置里搜索 "python.languageServer"&#xff0c;将 Python 的语言服务器设置为 Pylance 即可。

【数据可视化】Echarts官方文档及常用组件

个人主页 &#xff1a; zxctscl 如有转载请先通知 文章目录 1. 前言2. Echarts官方文档介绍3. ECharts基础架构及常用术语3.1 ECharts的基础架构3.2 ECharts的常用术语3.2.1 ECharts的基本名词3.2.2 ECharts的图表名词 4. 直角坐标系下的网格及坐标轴4.1 直角坐标系下的网格4.2…

C++的语法

可能需要用到存储各种数据类型&#xff08;比如字符型、宽字符型、整型、浮点型、双浮点型、布尔型等&#xff09; 下表显示了各种变量类型在内存中存储值时需要占用的内存&#xff0c;以及该类型的变量所能存储的最大值和最小值。 注意&#xff1a;不同系统会有所差异 #inc…

诺视科技完成亿元Pre-A2轮融资,加速Micro-LED微显示芯片商业化落地

近日&#xff0c;Micro-LED微显示芯片研发商诺视科技&#xff08;苏州&#xff09;有限公司&#xff08;以下简称“诺视科技”&#xff09;宣布完成亿元Pre-A2轮融资&#xff0c;本轮融资由力合资本领投&#xff0c;老股东盛景嘉成、汕韩基金以及九合创投持续加码&#xff0c;这…

【漏洞复现】北京新网医讯技术有限公司云端客服管理系统存在SQL注入漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

python模块

模块导入方式 模块需要在使用前进行导入 语法&#xff1a;[from 模块名] import [ 模块 | 类 | 函数 | *] [ as 别名 ] * 代表全部将该模块全部导入 from 模块名 import 功能名 #导入时间模块中的sleep方法 from time import sleep 注意&#xff1a;from可以省略 直接…

掘根宝典之C++正向迭代器和反向迭代器详解

简介 迭代器是一种用于遍历容器元素的对象。它提供了一种统一的访问方式&#xff0c;使程序员可以对容器中的元素进行逐个访问和操作&#xff0c;而不需要了解容器的内部实现细节。 C标准库里每个容器都定义了迭代器&#xff0c;这迭代器的名字就叫容器迭代器 迭代器的作用类…

java Flink(四十二)Flink的序列化以及TypeInformation介绍(源码分析)

Flink的TypeInformation以及序列化 TypeInformation主要作用是为了在 Flink系统内有效地对数据结构类型进行管理&#xff0c;能够在分布式计算过程中对数据的类型进行管理和推断。同时基于对数据的类型信息管理&#xff0c;Flink内部对数据存储也进行了相应的性能优化。 Flin…

C++ 11

目录 1. 统一的列表初始化 1.1 &#xff5b;&#xff5d;初始化 1.2 std::initializer_list 2. decltype 3. 右值引用和移动语义 3.1 左值引用和右值引用 3.2 左值引用与右值引用比较 3.3 右值引用使用场景和意义 3.4 右值引用引用左值及其一些更深入的使用场景分析 3…

[论文笔记] Gradient Surgery for Multi-Task Learning

【强化学习 137】PCGrad - 知乎 多任务学习(multi task):任务权重、loss均衡、梯度下降那点事 - 知乎 ICLR 2020 rejected submission:Yu T, Kumar S, Gupta A, et al. Gradient surgery for multi-task learning[J]. arXiv preprint arXiv:2001.06782, 2020. mul…

Java基础经典10道题

目录 for循环的嵌套 题目一: 求101到200之间的素数的个数,并打印 代码分析: 注意点: 题目二:开发验证码 代码分析: 题目三:数组元素的复制 代码分析: 题目四:评委打分 健壮版代码: 代码分析:看源码 注意点: 题目五:数字加密 优化版代码: 代码分析: 题目六:数字…

SpringCloud Sleuth 分布式请求链路跟踪

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第十篇&#xff0c;即介绍 Sleuth 分布式请求链路跟踪。 二、概述 2.1 出现的原因 在微服务框架中&…

万界星空科技WMS仓储管理包含哪些具体内容?

wms仓库管理是通过入库业务、出库业务、仓库调拨、库存调拨和虚仓管理等功能&#xff0c;综合批次管理、物料对应、库存盘点、质检管理、虚仓管理和即时库存管理等功能综合运用的管理系统&#xff0c;有效控制并跟踪仓库业务的物流和成本管理全过程&#xff0c;实现完善的企业仓…