超越标签的探索:K-means与DBSCAN在数据分析中的新视角

最近在苦恼为我的数据决定分组问题,在查找资料时,恰好看到机器学习中的无监督学习的聚类分析,正好适用于我的问题,但是我之前学机器学习时。正好没有学习无监督部分,因为我认为绝大多数问题都是有标签的监督学习,正是大意了,这不巧了正好遇上了,那就赶紧学习一下吧。
最近正在苦恼为我的数据决定分组问题,在查找资料时,恰好看到机器学习中的无监督学习的聚类分析,正好适用于我的问题,但是我之前学机器学习时。正好没有学习无监督部分,因为我认为绝大多数问题都是有标签的监督学习,真是大意了,这不巧了正好遇上了,那就赶紧学习一下吧。
15211902402723173.jpg
说到无监督学习,还真是强大,无监督学习的优点是可以处理没有标签的数据,发现数据的潜在规律和特征,适用于探索性的数据分析。就好像不需要老师教,就可以自己根据数据之间的关系对数据进行分组。
1507951832808435.jpg
因为我的问题比较适合K-means和DBSCAN解决,这篇文章我主要介绍这两种算法。
DBSCAN聚类分析是一种基于密度的聚类算法,它可以发现任意形状的簇,并且能够识别出噪声点。与之相比,K-means聚类算法是一种基于距离的聚类算法,它将数据划分为K个球形的簇,但是对噪声点和非球形的簇不太适合。下面我将用Python代码和图片来展示这两种算法的原理和效果。
首先,我们导入一些必要的库,如numpy, matplotlib, sklearn等,并生成一些随机的数据点,其中有四个簇和一些噪声点。

import os
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans, DBSCAN# 生成随机数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# 添加一些噪声点
X = np.r_[X, np.random.randn(10, 2) + [2, 2]]
plt.scatter(X[:, 0], X[:, 1], s=10, c='k')
plt.title('Raw data')
plt.show()

通过肉眼看到原始数据,还是比较聚集的,但是处于边界的这些点属于哪一个组(簇)呢,还是得通过聚类算法来确定。
image.png

k-means聚类分析

接下来,我们用K-means算法来对数据进行聚类,设置K=4,即我们想要得到四个簇。我们可以用sklearn库中的KMeans类来实现,它有以下几个重要的参数:

  • n_clusters: 聚类的个数,即K值
  • init: 初始质心的选择方法,可以是’random’或’k-means++',后者是一种优化的方法,可以加速收敛,但是是选择优化方法啦。🤭
  • n_init: 随机初始化的次数,算法会选择其中最好的一次作为最终结果
  • max_iter: 最大迭代次数,当迭代达到这个次数时,算法会停止,即使没有收敛
  • tol: 容忍度,当质心的移动小于这个值时,算法会认为已经收敛,停止迭代

我们可以用fit函数来训练模型,用predict函数来对数据进行预测,用inertia_属性来获取误差平方和,用cluster_centers_属性来获取质心的坐标。代码如下:

# K-means聚类
kmeans = KMeans(n_clusters=4, init='k-means++', n_init=10, max_iter=300, tol=1e-4, random_state=0)
y_pred = kmeans.fit_predict(X)
sse = kmeans.inertia_
centers = kmeans.cluster_centers_
print('K-means SSE:', sse)
plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)
plt.scatter(centers[:, 0], centers[:, 1], s=100, c='r', marker='*')
plt.title('K-means clustering')
plt.show()

k-means的均方差和为232.678,这个结果表示聚类效果还不错。
image.png
image.png
从-means聚类图中可以看出,K-means算法可以大致将数据分为四个簇,但是对于一些噪声点和边界点,它的划分效果不太理想,因为它只考虑了距离,而没有考虑密度。另外,K-means算法需要事先指定K值,如果K值不合适,可能会导致聚类效果很差。

DBSCAN聚类分析

下面,使用DBSCAN算法来对数据进行聚类,它不需要指定簇的个数,而是根据数据的密度来划分簇。我们可以用sklearn库中的DBSCAN类来实现,它有以下几个重要的参数:

  • eps: 邻域半径,即判断一个点是否为核心点的距离阈值;
  • min_samples: 邻域内的最小样本数,即判断一个点是否为核心点的密度阈值;
  • metric: 距离度量方式,可以是’euclidean’,‘manhattan’,'cosine’等;
  • algorithm: 邻域查询的算法,可以是’auto’,‘ball_tree’,‘kd_tree’,'brute’等,不同的算法有不同的时间和空间复杂度

然后可以用fit方法来训练模型,用fit_predict方法来对数据进行预测,用labels_属性来获取每个点的簇标签,用core_sample_indices_属性来获取核心点的索引。代码如下:

# DBSCAN聚类
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto')
y_pred = dbscan.fit_predict(X)
labels = dbscan.labels_
core_indices = dbscan.core_sample_indices_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0) # 去掉噪声点的簇个数
print('DBSCAN clusters:', n_clusters)
plt.scatter(X[:, 0], X[:, 1], s=10, c=y_pred)
plt.scatter(X[core_indices, 0], X[core_indices, 1], s=100, c='r', marker='*')
plt.title('DBSCAN clustering')
plt.show()

k-DBSCAN聚类分析总共是聚类了4个簇。
image.png
image.png
从图中可以看出,DBSCAN算法可以更好地将数据分为四个簇,并且能够识别出噪声点(黑色的点),因为它考虑了距离和密度,而且不需要事先指定簇的个数。另外,DBSCAN算法可以处理任意形状的簇,而不局限于球形的簇。

总结

总结一下,K-means和DBSCAN是两种常用的聚类算法,它们各有优缺点,适用于不同的场景。
K-means算法简单易懂,运行速度快,但是需要指定簇的个数,对噪声点和非球形的簇不太适合。DBSCAN算法不需要指定簇的个数,可以发现任意形状的簇,并且能够识别出噪声点,但是运行速度慢一些,对于不同密度的簇可能效果不好。
在实际应用中,还是需要根据数据的特点和需求来选择合适的聚类算法,不过如果愿意耐心多次对比参数,训练聚类分析算法,还是推荐DBSCAN算法。
R-C.jpg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/754388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

部署Zabbix Agents添加使能监测服务器_Windows平台_MSI/Archive模式

Windows平台 一、从MSI安装Windows代理,添加Windows Servers/PC 概述 可以从Windows MSI安装包(32位或64位) 安装Zabbix agent 32位包不能安装在64位Windows中 所有软件包都支持TLS,配置TLS可选 支持UI和命令行的安装。 1、下载Agent代理程序,使用Agent2升级版,官网链接如…

前端安全——最新:lodash原型漏洞从发现到修复全过程

人生的精彩就在于你永远不知道惊喜和意外谁先来,又是一个平平无奇的早晨,我收到了一份意外的惊喜——前端某项目出现lodash依赖原型污染漏洞。咋一听,很新奇。再仔细一看,呕吼,更加好奇了~然后就是了解和修补漏洞之旅。…

Java基础-泛型

泛型 基本概念为什么我们需要泛型泛型类型泛型类简单泛型类多元泛型类 泛型接口泛型方法为什么要使用泛型方法呢?使用方法 泛型的上下限上限下限加点难度的例子例子一例子二例子三 泛型数组深入理解泛型什么是泛型擦除后保留的原始类型泛型类型擦除原则如何进行擦除的?怎么证…

Linux课程四课---Linux第一个小程序(进度条)

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…

从入门到精通:深入解析IO流之FileWriter类的使用技巧!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好…

前端面试拼图-知识广度

摘要:最近,看了下慕课2周刷完n道面试题,记录并添加部分可参考的文档,如下... 1. 移动端H5 click有300ms延迟, 如何解决? 背景:double tap to zoom 移动端H5中的300ms点击延迟问题通常是由浏览…

从零开始学习在VUE3中使用canvas(三):font(字体)

一、简介 我们可以使用font在canvas中绘制文字,方式如下: const ctx canvas.getContext("2d"); // 绘制文字 ctx.font "24px 黑体, 宋体"; //字体大小 首选字体 备选字体 ctx.fillText("这里是显示的字的内容", 100, 50); //文字…

[QJS xmake] 非常简单地在Windows下编译QuickJS!

文章目录 前言准备C编译器xmake编译包 工程准备修改版本号第一遍编译第二遍编译效果 前言 quickjs是个很厉害的东西啊,我一直想编译一下的,奈何一直没成功。现在找了点时间成功编译了,写篇文章记录一下。当前版本:2024-1-13 应该…

OkHttp

文章目录 OkHttp概要1.简介2.特点3.基本组成5.工作流程 拦截器1.简介2.内置拦截器3.自定义拦截器 连接池1.简介2.常用参数配置选项 Dispatcher和线程池1.简介2.重要方法3.DispatCher中的双端队列4.总结 OkHttp 概要 1.简介 OkHttp是一个开源的HTTP客户端,用于在J…

留学文书可以彻底被AI取代吗?升学指导这一职业是否会被AI逼到墙角?

近日,ChatGPT再次“进化”,其最新版本ChatGPT-4又掀高潮。其生产者OpenAI 称,“ChatGPT-4是最先进的系统,能生产更安全和更有用的回复。”和上一代相比,GPT-4拥有了更广的知识面和更强的解决问题能力,在创意…

机器学习_聚类(k-means)

文章目录 聚类步骤k-means APIKmeans性能评估指标Kmeans性能评估指标API 聚类步骤 k-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。 1.首先,随机设K个特征空间内的点作为初始的…

详细分析Mysql中的LOCATE函数(附Demo)

目录 1. 基本概念2. Demo3. 实战 1. 基本概念 LOCATE()函数在SQL中用于在字符串中查找子字符串的位置 它的一般语法如下: LOCATE(substring, string, start)LOCATE()函数返回子字符串在主字符串中第一次出现的位置 如果未找到子字符串,则返回0 具体的…

Vue/Uni-app/微信小程序 v-if 设置出场/退出动画(页面交互不死板,看起来更流畅)

天梦星服务平台 (tmxkj.top)https://tmxkj.top/#/ 在Vue.js中&#xff0c;使用v-if进行条件渲染时设置动画可以通过<transition>组件来实现。 具体操作步骤如下&#xff1a; 包裹条件渲染的元素&#xff1a;您需要将要通过v-if控制显示隐藏的元素包裹在<transition…

keil软件不能连接STM32,烧录程序无法执行

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 问题现象解决方法 问题现象 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 最近在学习江科大的STM32的时候&#xff0c;学到11-2 硬件SPI读写W2…

跳绳计数,YOLOV8POSE

跳绳计数&#xff0c;YOLOV8POSE 通过计算腰部跟最初位置的上下波动&#xff0c;计算跳绳的次数

HTML静态网页成品作业(HTML+CSS)——个人介绍网页(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

Linux:Gitlab:16.9.2 (rpm包) 部署及基础操作(1)

1.基础环境 我只准备了一台gitlab服务器&#xff0c;访问就用真机进行访问&#xff0c;接下来介绍一下详细配置 centos7 内网ip:192.168.6.7 外网ip:172.20.10.4 运行内存&#xff1a;4G CPU:4核 先去配置基础环境 关闭防火墙以及selinux 再去下载基础的运行…

有趣且重要的JS知识合集(20)screen/client/scroll/offset等坐标属性知识点

1、线上链接地址 浏览器坐标属性 2、screen系列 2.1、screenX&#xff1a; 鼠标位置相对于用户屏幕水平偏移量 2.2、screenY&#xff1a; 鼠标位置相对于用户屏幕垂直偏移量 3、client系列 3.1、clientX: 鼠标位置相对于文档的左边距&#xff08;不随页面滚动而改变&a…

【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列三:Faster R-CNN图文详解

【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列二&#xff1a;Fast R-CNN图文详解 概念预设 感受野 感受野(Receptive Field) 是指特征图上的某个点能看到的输入图像的区域。 神经元感受野的值越大表示其能接触到的原始图像范围就越大&#xff0c;也意味着它…

LeetCode链表hard 有思路?但写不出来?

给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内部的值…