LLM文本生成—解码策略(Top-k Top-p Temperature)

{"top_k": 5,"temperature": 0.8,"num_beams": 1,"top_p": 0.75,"repetition_penalty": 1.5,"max_tokens": 30000,"message": [{"content": "你好","role": "user"}]
}

在大模型训练好之后,如何对训练好的模型进行解码(decode)是一个火热的研究话题。

在自然语言任务中,我们通常使用一个预训练的大模型(比如GPT)来根据给定的输入文本(比如一个开头或一个问题)生成输出文本(比如一个答案或一个结尾)。为了生成输出文本,我们需要让模型逐个预测每个 token ,直到达到一个终止条件(如一个标点符号或一个最大长度)。在每一步,模型会给出一个概率分布,表示它对下一个单词的预测。例如,如果输入的文本是“我最喜欢的”,那么模型可能会给出下面的概率分布:

那么,我们应该如何从这个概率分布中选择下一个单词呢?以下是几种常用的方法:

  • 贪心解码(Greedy Decoding):直接选择概率最高的单词。这种方法简单高效,但是可能会导致生成的文本过于单调和重复。
  • 随机采样(Random Sampling):按照概率分布随机选择一个单词。这种方法可以增加生成的多样性,但是可能会导致生成的文本不连贯和无意义。
  • Beam Search:维护一个大小为 k 的候选序列集合,每一步从每个候选序列的概率分布中选择概率最高的 k 个单词,然后保留总概率最高的 k 个候选序列。这种方法可以平衡生成的质量和多样性,但是可能会导致生成的文本过于保守和不自然。

以上方法都有各自的问题,而 top-k 采样和 top-p 采样是介于贪心解码和随机采样之间的方法,也是目前大模型解码策略中常用的方法。

top-k采样

在上面的例子中,如果使用贪心策略,那么选择的 token 必然就是“女孩”。

贪心解码是一种合理的策略,但也有一些缺点。例如,输出可能会陷入重复循环。想想智能手机自动建议中的建议。当你不断地选择建议最高的单词时,它可能会变成重复的句子。

Top-k 采样是对前面“贪心策略”的优化,它从排名前 k 的 token 中进行抽样,允许其他分数或概率较高的token 也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

top-k 采样的思路是,在每一步,只从概率最高的 k 个单词中进行随机采样,而不考虑其他低概率的单词。例如,如果 k=2,那么我们只从女孩、鞋子中选择一个单词,而不考虑大象、西瓜等其他单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下面是 top-k 采样的例子:

通过调整 k 的大小,即可控制采样列表的大小。“贪心策略”其实就是 k = 1的 top-k 采样。

下面是top-k 的代码实现:

import torch
from labml_nn.sampling import Sampler# Top-k Sampler
class TopKSampler(Sampler):# k is the number of tokens to pick# sampler is the sampler to use for the top-k tokens# sampler can be any sampler that takes a logits tensor as input and returns a token tensor; e.g. `TemperatureSampler`.def __init__(self, k: int, sampler: Sampler):self.k = kself.sampler = sampler# Sample from logitsdef __call__(self, logits: torch.Tensor):# New logits filled with −∞; i.e. zero probabilityzeros = logits.new_ones(logits.shape) * float('-inf')# Pick the largest k logits and their indicesvalues, indices = torch.topk(logits, self.k, dim=-1)# Set the values of the top-k selected indices to actual logits.# Logits of other tokens remain −∞zeros.scatter_(-1, indices, values)# Sample from the top-k logits with the specified sampler.return self.sampler(zeros)

总结一下,top-k 有以下有点:

  • 它可以根据不同的输入文本动态调整候选单词的数量,而不是固定为 k 个。这是因为不同的输入文本可能会导致不同的概率分布,有些分布可能比较平坦,有些分布可能比较尖锐。如果分布比较平坦,那么前 k 个单词可能都有相近的概率,那么我们就可以从中进行随机采样;如果分布比较尖锐,那么前 k 个单词可能会占据绝大部分概率,那么我们就可以近似地进行贪心解码。
  • 它可以通过调整 k 的大小来控制生成的多样性和质量。一般来说,k 越大,生成的多样性越高,但是生成的质量越低;k 越小,生成的质量越高,但是生成的多样性越低。因此,我们可以根据不同的任务和场景来选择合适的k 值。
  • 它可以与其他解码策略结合使用,例如温度调节(Temperature Scaling)、重复惩罚(Repetition Penalty)、长度惩罚(Length Penalty)等,来进一步优化生成的效果。

但是 top-k 也有一些缺点,比如:

  • 它可能会导致生成的文本不符合常识或逻辑。这是因为 top-k 采样只考虑了单词的概率,而没有考虑单词之间的语义和语法关系。例如,如果输入文本是“我喜欢吃”,那么即使饺子的概率最高,也不一定是最合适的选择,因为可能用户更喜欢吃其他食物。
  • 它可能会导致生成的文本过于简单或无聊。这是因为 top-k 采样只考虑了概率最高的 k 个单词,而没有考虑其他低概率但有意义或有创意的单词。例如,如果输入文本是“我喜欢吃”,那么即使苹果、饺子和火锅都是合理的选择,也不一定是最有趣或最惊喜的选择,因为可能用户更喜欢吃一些特别或新奇的食物。

因此,我们通常会考虑 top-k 和其它策略结合,比如 top-p。

top-p采样

top-k 有一个缺陷,那就是“k 值取多少是最优的?”非常难确定。于是出现了动态设置 token 候选列表大小策略——即核采样(Nucleus Sampling)。

top-p 采样的思路是,在每一步,只从累积概率超过某个阈值 p 的最小单词集合中进行随机采样,而不考虑其他低概率的单词。这种方法也被称为核采样(nucleus sampling),因为它只关注概率分布的核心部分,而忽略了尾部部分。例如,如果 p=0.9,那么我们只从累积概率达到 0.9 的最小单词集合中选择一个单词,而不考虑其他累积概率小于 0.9 的单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下图展示了 top-p 值为 0.9 的 Top-p 采样效果:

top-p 值通常设置为比较高的值(如0.75),目的是限制低概率 token 的长尾。我们可以同时使用 top-k 和 top-p。如果 k 和 p 同时启用,则 p 在 k 之后起作用。

下面是 top-p 代码实现的例子:

import torch
from torch import nnfrom labml_nn.sampling import Samplerclass NucleusSampler(Sampler):"""## Nucleus Sampler"""def __init__(self, p: float, sampler: Sampler):""":param p: is the sum of probabilities of tokens to pick $p$:param sampler: is the sampler to use for the selected tokens"""self.p = pself.sampler = sampler# Softmax to compute $P(x_i | x_{1:i-1})$ from the logitsself.softmax = nn.Softmax(dim=-1)def __call__(self, logits: torch.Tensor):"""Sample from logits with Nucleus Sampling"""# Get probabilities $P(x_i | x_{1:i-1})$probs = self.softmax(logits)# Sort probabilities in descending ordersorted_probs, indices = torch.sort(probs, dim=-1, descending=True)# Get the cumulative sum of probabilities in the sorted ordercum_sum_probs = torch.cumsum(sorted_probs, dim=-1)# Find the cumulative sums less than $p$.nucleus = cum_sum_probs < self.p# Prepend ones so that we add one token after the minimum number# of tokens with cumulative probability less that $p$.nucleus = torch.cat([nucleus.new_ones(nucleus.shape[:-1] + (1,)), nucleus[..., :-1]], dim=-1)# Get log probabilities and mask out the non-nucleussorted_log_probs = torch.log(sorted_probs)sorted_log_probs[~nucleus] = float('-inf')# Sample from the samplersampled_sorted_indexes = self.sampler(sorted_log_probs)# Get the actual indexesres = indices.gather(-1, sampled_sorted_indexes.unsqueeze(-1))#return res.squeeze(-1)

Temperature采样

Temperature 采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits 扮演着能量的角色,我们可以通过将 logits 除以温度来实现温度采样,然后将其输入 Softmax 并获得采样概率。

越低的温度使模型对其首选越有信心,而高于1的温度会降低信心。0温度相当于 argmax 似然,而无限温度相当于均匀采样。

Temperature 采样中的温度与玻尔兹曼分布有关,其公式如下所示:

\rho_i = \frac{1}{Q}e^{-\epsilon_i/kT}=\frac{e^{-\epsilon i/kT}}{\sum{j=1}^M e^{-\epsilon_j/kT}}\\

其中 

\rho_i

 是状态 

i

 的概率, 

\epsilon_i

 是状态 

i

 的能量, 

k

 是波兹曼常数, 

T

 是系统的温度, 

M

 是系统所能到达的所有量子态的数目。

有机器学习背景的朋友第一眼看到上面的公式会觉得似曾相识。没错,上面的公式跟 Softmax 函数 :

\text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{c=1}^Ce^{z_c}}\\

很相似,本质上就是在 Softmax 函数上添加了温度(T)这个参数。Logits 根据我们的温度值进行缩放,然后传递到 Softmax 函数以计算新的概率分布。

上面“我喜欢漂亮的___”这个例子中,初始温度 

T=1

 ,我们直观看一下 

T

 取不同值的情况下,概率会发生什么变化:

通过上图我们可以清晰地看到,随着温度的降低,模型愈来愈越倾向选择”女孩“;另一方面,随着温度的升高,分布变得越来越均匀。当 

T=50

 时,选择”西瓜“的概率已经与选择”女孩“的概率相差无几了。

通常来说,温度与模型的“创造力”有关。但事实并非如此。温度只是调整单词的概率分布。其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定

下面是 Temperature 采样的代码实现:

import torch
from torch.distributions import Categoricalfrom labml_nn.sampling import Samplerclass TemperatureSampler(Sampler):"""## Sampler with Temperature"""def __init__(self, temperature: float = 1.0):""":param temperature: is the temperature to sample with"""self.temperature = temperaturedef __call__(self, logits: torch.Tensor):"""Sample from logits"""# Create a categorical distribution with temperature adjusted logitsdist = Categorical(logits=logits / self.temperature)# Samplereturn dist.sample()

联合采样(top-k & top-p & Temperature)

通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

我们还是以前面的例子为例。

首先我们设置 top-k = 3,表示保留概率最高的3个 token。这样就会保留女孩、鞋子、大象这3个 token。

  • 女孩:0.664
  • 鞋子:0.199
  • 大象:0.105

接下来,我们可以使用 top-p 的方法,保留概率的累计和达到 0.8 的单词,也就是选取女孩和鞋子这两个 token。接着我们使用 Temperature = 0.7 进行归一化,变成:

  • 女孩:0.660
  • 鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/752709.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7 安装ErLang语言环境

在线搜索适合当前linux系统的epel在线安装。 yum -y install epel-release下载erlang-solutions安装包。 wget https://packages.erlang-solutions.com/erlang-solutions-1.0-1.noarch.rpm离线安装erlang-solutions安装包。 rpm -Uvh erlang-solutions-1.0-1.noarch.rpm在线…

【C语言】字符串函数下

&#x1f451;个人主页&#xff1a;啊Q闻 &#x1f387;收录专栏&#xff1a;《C语言》 &#x1f389;道阻且长&#xff0c;行则将至 前言 这篇博客是字符串函数下篇&#xff0c;主要是关于长度受限制的字符串函数&#xff08;strncpy,strncat,strncmp)的使用…

【LabVIEW FPGA入门】FPGA中的数据流

LabVIEW 以数据流方式执行代码。 当节点的所有输入上都存在数据时&#xff0c;该节点就会执行。 当节点完成执行时&#xff0c;节点的输出将数据传递到下游的下一个节点。 LabVIEW FPGA 使用三个组件来维护这种数据流范例。 节点具有与其功能相对应的逻辑 同步&#xff0c;该组…

Python数学建模-2.5Pandas库介绍

2.5.1Pandas基本操作 Pandas是一个强大的Python数据分析库&#xff0c;它提供了快速、灵活且富有表现力的数据结构&#xff0c;设计初衷是为了处理关系型或标记型数据。Pandas的基本操作涵盖了数据的读取、处理、筛选、排序、分组、合并以及可视化等多个方面。 以下是一些Pan…

【SpringBoot】解决数据库时间和返回时间格式不一致的问题

先看问题: 类中的属性中有Date类型的属性 数据库表中的数据: 可以看到也没问题 但是在返回实体类对象时,数据类型是这样的: 虽然数据是成功返回了,但这显然不是我们想要的结果.也不符合我们的日常使用习惯. 这个问题虽然前端,后端都能处理,但最好还是后端来进行处理.前端主…

22款Visual Studio Code实用插件推荐

前言 Visual Studio Code是一个轻量级但功能强大的源代码编辑器&#xff0c;轻量级指的是下载下来的Visual Studio Code其实就是一个简单的编辑器&#xff0c;强大指的是支持多种语言的环境插件拓展&#xff0c;也正是因为这种支持插件式安装环境开发让Visual Studio Code成为…

【数据结构】深入理解AVL树:实现和应用

AVL树是一种自平衡的二叉搜索树&#xff0c;它能够保持良好的平衡性质&#xff0c;使得在最坏情况下的时间复杂度也能保持在对数级别。本文将深入介绍AVL树的原理、实现和应用&#xff0c;并通过示例代码演示其基本操作。 文章目录 什么是AVL树&#xff1f;AVL树的实现在AVL树…

Vue工程化基础

一Ajax 1.1Ajax概述&#xff1a; 异步与同步 繁琐被淘汰了。 二Axios2 前后端混合开发&#xff1a; 前后端分离开发&#xff1a; YAPI 三前端开发工程化 四Vue脚手架 项目的认识 改变端口号 五Vue开发流程&#xff1a; 六Element组件 6.1快速入门 下载> npm install e…

阿里云数据库优惠价格99元1年起MySQL/SQL Server/PostgreSQL/Redis/MongoDB/MairaDB/ClickHouse

2024年阿里云数据库价格查询&#xff0c;云数据库优惠活动MySQL版2核2GB 50GB配置99元一年&#xff0c;续费不涨价&#xff0c;续费也是99元1年&#xff0c;云数据库MySQL基础系列经济版 2核4GB 100GB配置227元1年&#xff0c;RDS SQL Server云数据库2核4G配置299元1年&#xf…

自学rabbitmq入门到精通

交换机的fault &#xff08;发布与订阅模式&#xff09; 因为消息是由生产者发送给excahnge&#xff0c;exchange发送给队列&#xff0c; 然后由队列发送给消费者的。 展示使用图形化界面使用fanout模式。 创建交换机 然后创建三个队列&#xff0c;绑定对应的交换机&#xff…

深度学习pytorch——Broadcast自动扩展

介绍 在 PyTorch 中&#xff0c;Broadcast 是指自动扩展&#xff08;broadcasting&#xff09;运算的功能。它允许用户在不同形状的张量之间执行运算&#xff0c;而无需手动将它们的形状改变为相同的大小。当进行运算时&#xff0c;PyTorch 会自动调整张量的形状&#xff0c;使…

C# danbooru Stable Diffusion 提示词反推 Onnx Demo

目录 说明 效果 模型信息 项目 代码 下载 C# danbooru Stable Diffusion 提示词反推 Onnx Demo 说明 模型下载地址&#xff1a;https://huggingface.co/deepghs/ml-danbooru-onnx 效果 模型信息 Model Properties ------------------------- ----------------------…

深度学习 精选笔记(12)卷积神经网络-理论基础2

学习参考&#xff1a; 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增)&#xff0c;以达到集多方教程的精华于一文的目的。 ③非常推荐上面&#xff08;学习参考&#x…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Counter)

计数器组件&#xff0c;提供相应的增加或者减少的计数操作。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 接口 Counter() 从API version 9开始&#xff0c;该接口…

SQL的数据定义语言(DDL)语句

文章目录 数据库操作创建新的数据库修改数据库删除数据库 表操作创建数据库表修改数据表删除数据表 索引操作创建索引修改索引 视图操作修改视图 序列操作创建序列修改序列删除序列 分区操作&#xff08;在支持分区的数据库中&#xff09;同义词操作&#xff08;在Oracle等数据…

使用map和set实现简单的词频统计

一、运行效果图 二、代码示例 #include <iostream> #include <fstream> #include <sstream> #include <string> #include <map> #include <set> #include <vector> #include <algorithm> using namespace std;class TextQuer…

LarkXR上新了 | Apollo多终端与XR体验的优化创新

作为领先的数字平行世界产品技术提供方&#xff0c;「Paraverse平行云」一直致力于为企业和开发者提供企业级实时云渲染解决方案。其多终端接入产品LarkXR Apollo&#xff0c;基于底层Runtime技术&#xff0c;实现了在Windows、Linux、MacOS、Android、iOS等多种操作系统下&…

游戏服务端配置“热更”及“秒启动”终极方案(golang/ygluu/卢益贵)

游戏服务端配置“热更”及“秒启动”终极方案 ygluu 卢益贵 关键词&#xff1a;游戏微服务架构、游戏服务端热更、模块化解耦、golang 目录 一、前言 二、异步线程加载/重载方案 三、配置表碎片化方案 四、指针间接引用 五、重载通知 六、示例代码 七、相关连接 一、…

Samtec科普 | 一文了解患者护理应用连接器

【摘要/前言】 通过医疗专业人士为患者提供护理的种种需求&#xff0c;已经不限于手术室与医院的各种安全状况。当今许多患者的护理都是在其他环境进行&#xff0c;例如医生办公室、健康中心&#xff0c;还有越来越普遍的住家。尤其是需要长期看护的患者&#xff0c;所需的科技…

202006A卷青少年软件编程(Scratch)等级考试试卷(三级)

第1题:【 单选题】 执行以下脚本后舞台上的角色将 ?( ) A:先克隆自身,克隆体出现后被删除 B:先克隆自身,克隆体出现后删除本体 C:克隆出自身后本体与克隆体同时被删除 D:克隆出自身后本体与克隆体被不会被删除 【正确答案】: A 【试题解析】 : 第2题:【 单选题】…