深度学习——SAM(Segment-Anything)代码详解

目录

  • 引言
  • 代码目录
  • segment-anything 代码详解
  • build_sam.py
  • predictor.py
  • automatic_mask_generator.py

引言

从去年年初至今,SAM(Segment Anything )已经问世快一年了,SAM凭借其强大而突出的泛化性能在各项任务上取得了优异的表现,广大的研究者竞相跟进,对SAM以及其应用做了广泛而深入的研究,产生了许许多多的研究成果。写下这篇文章的时间是2024年的3月13日,写作这篇文章一方面是让自己对SAM有一个更清晰透彻的了解,另一方面是为后来者提供一下学习上的方面。对于论文,网上有很多很多的讲解,我在此就不加赘述了,本文主要关注代码的部分,对代码进行逐层的剖析。

代码目录

论文链接地址:https://ai.facebook.com/research/publications/segment-anything/
github仓库:https://github.com/facebookresearch/segment-anything
我下载代码的时间是2024年的3月13日,代码的完整目录结构是这样的
在这里插入图片描述
其中:
assets:存放的是图片
demo:存放的是前端部署的代码
notebooks:存的是使用的教程,包含三部分,第一部分是onnx跨平台实例,第二部分automatic_mask_generator_example是全景分割,第三部分predictor_example是prompt(使用point或bbox)分割
script:存放的是一些导出的脚本
segment_anything:这个是项目的核心代码
其余的目录和文件可以忽略不计
因此作为一个初学者,你可以对这个目录进行化简,方便学习和理解代码的全貌。(注:项目的代码可以不安装,从github下载下来后,配置完权重后可以直接运行,这种方式比较适合学习和后续研究

在这里插入图片描述
上图是目录化简后的全貌,多出的checkpoints 目录存放的是网络的权重:vit_h,vit_l,vit_b ,在显存不是很充足的情况下(GPU 显存小于12G)请选用vit_b。

segment-anything 代码详解

在这里插入图片描述

build_sam.py

这个文件包含三层的封装,最外层是sam_model_registry,它提供了统一的接口,用来选择vit_h,vit_l,vit_b,默认使用vit_h

sam_model_registry = {"default": build_sam_vit_h,"vit_h": build_sam_vit_h,"vit_l": build_sam_vit_l,"vit_b": build_sam_vit_b,
}

然后是三种模型的构建,也就是第二层build_sam_vit_x,这三个sam模型的差别主要体现维度,深度,注意力机制头的个数,在哪几层做注意力机制

def build_sam_vit_h(checkpoint=None):return _build_sam(encoder_embed_dim=1280,encoder_depth=32,encoder_num_heads=16,encoder_global_attn_indexes=[7, 15, 23, 31],checkpoint=checkpoint,)build_sam = build_sam_vit_hdef build_sam_vit_l(checkpoint=None):return _build_sam(encoder_embed_dim=1024,encoder_depth=24,encoder_num_heads=16,encoder_global_attn_indexes=[5, 11, 17, 23],checkpoint=checkpoint,)def build_sam_vit_b(checkpoint=None):return _build_sam(encoder_embed_dim=768,encoder_depth=12,encoder_num_heads=12,encoder_global_attn_indexes=[2, 5, 8, 11],checkpoint=checkpoint,)

这段代码是sam 模型构建的统一代码,主要构建一个image_encoder,prompt_encoder,mask_decoder,以及在有权重的情况下加载sam的权重

def _build_sam(encoder_embed_dim,encoder_depth,encoder_num_heads,encoder_global_attn_indexes,checkpoint=None,
):prompt_embed_dim = 256image_size = 1024vit_patch_size = 16image_embedding_size = image_size // vit_patch_sizesam = Sam(image_encoder=ImageEncoderViT(depth=encoder_depth,embed_dim=encoder_embed_dim,img_size=image_size,mlp_ratio=4,norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),num_heads=encoder_num_heads,patch_size=vit_patch_size,qkv_bias=True,use_rel_pos=True,global_attn_indexes=encoder_global_attn_indexes,window_size=14,out_chans=prompt_embed_dim,),prompt_encoder=PromptEncoder(embed_dim=prompt_embed_dim,image_embedding_size=(image_embedding_size, image_embedding_size),input_image_size=(image_size, image_size),mask_in_chans=16,),mask_decoder=MaskDecoder(num_multimask_outputs=3,transformer=TwoWayTransformer(depth=2,embedding_dim=prompt_embed_dim,mlp_dim=2048,num_heads=8,),transformer_dim=prompt_embed_dim,iou_head_depth=3,iou_head_hidden_dim=256,),pixel_mean=[123.675, 116.28, 103.53],pixel_std=[58.395, 57.12, 57.375],)sam.eval()if checkpoint is not None:with open(checkpoint, "rb") as f:state_dict = torch.load(f)sam.load_state_dict(state_dict)return sam

predictor.py

predictor.py文件实现了SamPredictor类,该类中包含两个重要的函数,一个是set_image函数,一个是predict函数,通过这两个函数可以反复高效地预测图片。

首先来看set_image这个函数

  1. 对输入的图像按照长边和目标尺寸的比例缩放
  2. 转换成tensor
  3. 转换成[1,3,h,w]的形式
  4. 调用set_torch_image函数获得image在经过了image_encoder之后的特征或者说是image_embedding
  def set_image(self,image: np.ndarray,     # 需要是[h,w,c]的形式,uint8类型image_format: str = "RGB",  #RGB ,BGR) -> None:assert image_format in ["RGB","BGR",], f"image_format must be in ['RGB', 'BGR'], is {image_format}."    #对类型进行断言判断if image_format != self.model.image_format:image = image[..., ::-1]# Transform the image to the form expected by the modelinput_image = self.transform.apply_image(image)  #对按长边和目标尺寸的比例缩放input_image_torch = torch.as_tensor(input_image, device=self.device)  #转换成tensorinput_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]   #转换成[1,3,h,w]self.set_torch_image(input_image_torch, image.shape[:2])

对于set_torch_image这个函数,主要有两个功能

  1. 对transformed_image进行预处理减去imagenet均值,除以imagenet标准差
  2. 对输入图像进行image_encoder编码
 def set_torch_image(self,transformed_image: torch.Tensor,original_image_size: Tuple[int, ...],   #原始的未经转换过的图像的大小) -> None:assert (len(transformed_image.shape) == 4and transformed_image.shape[1] == 3and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."self.reset_image()self.original_size = original_image_sizeself.input_size = tuple(transformed_image.shape[-2:])input_image = self.model.preprocess(transformed_image)  #图像预处理,减去均值,除以方差self.features = self.model.image_encoder(input_image)  #对图像进行进行image_encoder编码self.is_image_set = True

set_image只需要做一次,反复使用,predict函数可以做多次,predict函数有以下几个参数
point_coords: 是一个nx2的数组,以[x,y]的形式传入
point_labels: 长度为n的数组,前景点为1,背景点为0
bbox :长度为4的数组,形式为xyxy
mask_input:低分辨率的mask,来源于前一个迭代,形状为1xhxw, 其中h=w=256
multimask_output :当为true的时候会返回3个mask,对于模棱两可的prompt比如一个点,多输出可以比单单输出产生更高质量的Mask,如果只有一个mask是被需要的,可以通过quality score 来筛选mask,对于非模棱两可的输入,比如多个prompt,将multmask_output设置为false可以得到更好的结果
return_logits:如果设置为true,返回非抑制后的值,否则返回二值化的mask

   def predict(self,point_coords: Optional[np.ndarray] = None,point_labels: Optional[np.ndarray] = None,box: Optional[np.ndarray] = None,mask_input: Optional[np.ndarray] = None,multimask_output: bool = True,return_logits: bool = False,) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:"""Predict masks for the given input prompts, using the currently set image.Returns:(np.ndarray): The output masks in CxHxW format, where C is thenumber of masks, and (H, W) is the original image size.(np.ndarray): An array of length C containing the model'spredictions for the quality of each mask.(np.ndarray): An array of shape CxHxW, where C is the numberof masks and H=W=256. These low resolution logits can be passed toa subsequent iteration as mask input."""if not self.is_image_set:raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")# Transform input promptscoords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, Noneif point_coords is not None:assert (point_labels is not None), "point_labels must be supplied if point_coords is supplied."point_coords = self.transform.apply_coords(point_coords, self.original_size)  #和图像尺寸一致coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] #在原有的基础上扩充一个维度[1,n,2]  ,[1,n]if box is not None:box = self.transform.apply_boxes(box, self.original_size)box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)box_torch = box_torch[None, :] #在原有的基础上扩充一个维度[1,n,4]if mask_input is not None:mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)mask_input_torch = mask_input_torch[None, :, :, :]masks, iou_predictions, low_res_masks = self.predict_torch(coords_torch,labels_torch,box_torch,mask_input_torch,multimask_output,return_logits=return_logits,)masks_np = masks[0].detach().cpu().numpy()iou_predictions_np = iou_predictions[0].detach().cpu().numpy()low_res_masks_np = low_res_masks[0].detach().cpu().numpy()return masks_np, iou_predictions_np, low_res_masks_np

在predict函数中调用了 predict_torch这个函数来完成mask的预测,首先是调用了prompt_encoder,然后调用mask_decoder进行解码,最后对mask进行后处理

  def predict_torch(self,point_coords: Optional[torch.Tensor],point_labels: Optional[torch.Tensor],boxes: Optional[torch.Tensor] = None,mask_input: Optional[torch.Tensor] = None,multimask_output: bool = True,return_logits: bool = False,) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:if not self.is_image_set:raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")if point_coords is not None:points = (point_coords, point_labels)else:points = None# Embed promptssparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points,boxes=boxes,masks=mask_input,)# Predict maskslow_res_masks, iou_predictions = self.model.mask_decoder(image_embeddings=self.features,image_pe=self.model.prompt_encoder.get_dense_pe(),sparse_prompt_embeddings=sparse_embeddings,dense_prompt_embeddings=dense_embeddings,multimask_output=multimask_output,)# Upscale the masks to the original image resolutionmasks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)if not return_logits:masks = masks > self.model.mask_thresholdreturn masks, iou_predictions, low_res_masks

图像处理流程
在这里插入图片描述

automatic_mask_generator.py

automatic_mask_generator.py中实现了自动全景分割的类SamAutomaticMaskGenerator,通过产生一些列的网格点prompt,调用SamPredictor生成mask,然后去除低质量的点
model :SAM 模型
points_per_side:每条边的采样点个数,总点数是points_per_side的平方,如果该参数没有指定,需要显示指定point_grids
points_per_batch:每批次运行的点的个数,数字越大越快,但是会消耗更多的显存
pred_iou_thresh: iou阈值
stability_score_thresh :score阈值
stability_score_offset没看懂
box_nms_thresh:非极大值抑制
crop_n_layers :层数,大于n>0时,在这张图片上进行n次全图分割
crop_nms_thresh:非极大值抑制
crop_overlap_ratio:crop的重合比例
crop_n_points_downscale_factor :每层每条边的点数降多少倍,就比如如果为2,每条边的点数就变成16,总点数256
point_grids :一系列的点
min_mask_region_area :最小区域面积
output_mode :输出模式

    def __init__(self,model: Sam,points_per_side: Optional[int] = 32,points_per_batch: int = 64,pred_iou_thresh: float = 0.88,stability_score_thresh: float = 0.95,stability_score_offset: float = 1.0,box_nms_thresh: float = 0.7,crop_n_layers: int = 0,crop_nms_thresh: float = 0.7,crop_overlap_ratio: float = 512 / 1500,crop_n_points_downscale_factor: int = 1,point_grids: Optional[List[np.ndarray]] = None,min_mask_region_area: int = 0,output_mode: str = "binary_mask",) -> None:"""Using a SAM model, generates masks for the entire image.Generates a grid of point prompts over the image, then filterslow quality and duplicate masks. The default settings are chosenfor SAM with a ViT-H backbone.assert (points_per_side is None) != (point_grids is None), "Exactly one of points_per_side or point_grid must be provided."#生成网格点,或者批量指定if points_per_side is not None:self.point_grids = build_all_layer_point_grids(points_per_side,crop_n_layers,crop_n_points_downscale_factor,)elif point_grids is not None:self.point_grids = point_gridselse:raise ValueError("Can't have both points_per_side and point_grid be None.")assert output_mode in ["binary_mask","uncompressed_rle","coco_rle",], f"Unknown output_mode {output_mode}."if output_mode == "coco_rle":from pycocotools import mask as mask_utils  # type: ignore # noqa: F401if min_mask_region_area > 0:import cv2  # type: ignore # noqa: F401self.predictor = SamPredictor(model)self.points_per_batch = points_per_batchself.pred_iou_thresh = pred_iou_threshself.stability_score_thresh = stability_score_threshself.stability_score_offset = stability_score_offsetself.box_nms_thresh = box_nms_threshself.crop_n_layers = crop_n_layersself.crop_nms_thresh = crop_nms_threshself.crop_overlap_ratio = crop_overlap_ratioself.crop_n_points_downscale_factor = crop_n_points_downscale_factorself.min_mask_region_area = min_mask_region_areaself.output_mode = output_mode

在__init__()函数中最终要的是生成网格点,默认每条边生成32个点,总共生成32的平方个点,这些点是归一化的点

generate函数用来生成mask,它是一系列操作的一个封装,返回的是一个list,列表里包含每个mask_region的相关信息

def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:# Generate masksmask_data = self._generate_masks(image)    #核心函数# Filter small disconnected regions and holes in masksif self.min_mask_region_area > 0:mask_data = self.postprocess_small_regions(mask_data,self.min_mask_region_area,max(self.box_nms_thresh, self.crop_nms_thresh),)# Encode masksif self.output_mode == "coco_rle":mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]elif self.output_mode == "binary_mask":mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]else:mask_data["segmentations"] = mask_data["rles"]# Write mask recordscurr_anns = []for idx in range(len(mask_data["segmentations"])):ann = {"segmentation": mask_data["segmentations"][idx],"area": area_from_rle(mask_data["rles"][idx]),"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),"predicted_iou": mask_data["iou_preds"][idx].item(),"point_coords": [mask_data["points"][idx].tolist()],"stability_score": mask_data["stability_score"][idx].item(),"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),}curr_anns.append(ann)return curr_anns

generate函数中会调用 _generate_masks函数

 def _generate_masks(self, image: np.ndarray) -> MaskData:orig_size = image.shape[:2]crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)# Iterate over image cropsdata = MaskData()for crop_box, layer_idx in zip(crop_boxes, layer_idxs):crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)data.cat(crop_data)# Remove duplicate masks between cropsif len(crop_boxes) > 1:# Prefer masks from smaller cropsscores = 1 / box_area(data["crop_boxes"])scores = scores.to(data["boxes"].device)keep_by_nms = batched_nms(data["boxes"].float(),scores,torch.zeros_like(data["boxes"][:, 0]),  # categoriesiou_threshold=self.crop_nms_thresh,)data.filter(keep_by_nms)data.to_numpy()return data

对crop出来的图片进行进行预测

 def _process_crop(self,image: np.ndarray,crop_box: List[int],crop_layer_idx: int,orig_size: Tuple[int, ...],) -> MaskData:# Crop the image and calculate embeddingsx0, y0, x1, y1 = crop_boxcropped_im = image[y0:y1, x0:x1, :]cropped_im_size = cropped_im.shape[:2]self.predictor.set_image(cropped_im)# Get points for this croppoints_scale = np.array(cropped_im_size)[None, ::-1]points_for_image = self.point_grids[crop_layer_idx] * points_scale# Generate masks for this crop in batchesdata = MaskData()for (points,) in batch_iterator(self.points_per_batch, points_for_image):batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)data.cat(batch_data)del batch_dataself.predictor.reset_image()# Remove duplicates within this crop.keep_by_nms = batched_nms(data["boxes"].float(),data["iou_preds"],torch.zeros_like(data["boxes"][:, 0]),  # categoriesiou_threshold=self.box_nms_thresh,)data.filter(keep_by_nms)# Return to the original image framedata["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)data["points"] = uncrop_points(data["points"], crop_box)data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])return data

输入批量的点批量预测

  def _process_batch(self,points: np.ndarray,im_size: Tuple[int, ...],crop_box: List[int],orig_size: Tuple[int, ...],) -> MaskData:orig_h, orig_w = orig_size# Run model on this batchtransformed_points = self.predictor.transform.apply_coords(points, im_size)in_points = torch.as_tensor(transformed_points, device=self.predictor.device)in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)masks, iou_preds, _ = self.predictor.predict_torch(in_points[:, None, :],   #[b,n,2]in_labels[:, None],      #[b,n]multimask_output=True,return_logits=True,)# Serialize predictions and store in MaskDatadata = MaskData(masks=masks.flatten(0, 1),iou_preds=iou_preds.flatten(0, 1),points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),)del masks# Filter by predicted IoUif self.pred_iou_thresh > 0.0:keep_mask = data["iou_preds"] > self.pred_iou_threshdata.filter(keep_mask)# Calculate stability scoredata["stability_score"] = calculate_stability_score(data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset)if self.stability_score_thresh > 0.0:keep_mask = data["stability_score"] >= self.stability_score_threshdata.filter(keep_mask)# Threshold masks and calculate boxesdata["masks"] = data["masks"] > self.predictor.model.mask_thresholddata["boxes"] = batched_mask_to_box(data["masks"])# Filter boxes that touch crop boundarieskeep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])if not torch.all(keep_mask):data.filter(keep_mask)# Compress to RLEdata["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)data["rles"] = mask_to_rle_pytorch(data["masks"])del data["masks"]return data

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

源码编译部署LAMP

编译部署LAMP 配置apache [rootzyq ~]#: wget https://downloads.apache.org/apr/apr-1.7.4.tar.gz --2023-12-11 14:35:57-- https://downloads.apache.org/apr/apr-1.7.4.tar.gz Resolving downloads.apache.org (downloads.apache.org)... 88.99.95.219, 135.181.214.104…

BUUCTF-WEB1

[ACTF2020 新生赛]Exec1 1.打开靶机 是一个ping命令 2.利用管道符“|” ping一下本地主机并查看ls ping 127.0.0.1 | ls 可以看到回显的内容是一个文件 127.0.0.1 | cat index.php #查看主机下index.php 127.0.0.1 | ls / #查看主机根目录下的文件 看的一个flag文件 …

数据仓库数据分层详解

数据仓库中的数据分层是一种重要的数据组织方式,其目的是为了在管理数据时能够对数据有一个更加清晰的掌控。以下是数据仓库中的数据分层详解: 原始数据层(Raw Data Layer):这是数仓中最底层的层级,用于存…

jupyter闪退和自动跳转问题

1.闪退问题 当我们点击jupyter时,它会闪一下,然后无法进入,这个时候我们可以去prompt命令行输入jupyter notebook启动试试,如果还不行,我们可以根据报错去解决,一般csdn上都有对应情况,直接搜索…

Linux-新手小白速秒Hadoop集群全生态搭建(图文混编超详细)

在之前的文章中,我教会大家如何一步一步搭建一个Hadoop集群,但是只提供了代码,怕有些朋友会在一些地方产生疑惑,今天我来以图文混排的方式,一站式交给大家如何搭建一个Hadoop高可用集群包括(HadoopHA&#…

el-select使用filterable下拉无法关闭得问题

这里推荐一个前端框架 sakuya / SCUI,他里面有个formTable,可以解决很多订单明细保存得问题。基本沿用element-plus的前端使用模式,让表单表格变的非常容易。 这个的供应商插件,当使用filterable后,点击表格重的选项&…

Redis Desktop Manager:一站式Redis数据库管理与优化

Redis Desktop Manager是一款功能强大的Redis桌面管理工具,也被称作Redis可视化工具。以下是其主要的功能特色: 连接管理:Redis Desktop Manager支持连接多个Redis服务器,用户可以在同一界面下管理多个数据库,大大提高…

记录一下在Pycharm中虚拟环境的创建

如果在Pycharm中要新建一个虚拟环境,那你可以在Terminal中选择Command Prompt,在这里面执行相关命令 一、安装了Anaconda,创建虚拟环境 当你使用解释器是Anaconda提供的时,你可以使用conda命令执行,见以下操作&#x…

前端Vue与uni-app中的九宫格、十二宫格和十五宫格菜单组件实现

在前端 Vue 开发中,我们经常会遇到需要开发九宫格、十二宫格和十五宫格菜单按钮的需求。这些菜单按钮通常用于展示不同的内容或功能,提供给用户快速访问和选择。 一、引言 在前端开发中,九宫格、十二宫格和十五宫格菜单按钮是一种常见的布局…

202206 CSP认证 | 角色授权

角色授权 fine,又是一道acwing上TLE但是平台通过了的,那就酱吧… 直接跟着题目来模拟的…先找到每个用户授予的所有角色,包括用户本身和它所属的用户组。 然后遍历这个角色集合,看是否有操作权限,种类权限以及资源名称…

SVN修改已提交版本的注释

目录 一、需求分析 二、问题分析 三、解决办法 一、需求分析 ​开发过程中,在SVN提交文件后,发现注释写的不完整或不够明确,想再修改之前的注释文字​。 使用环境: SVN服务器操作系统:Ubuntu 20.04.6 LTS SVN版本&…

JVM实战篇

内存调优 内存溢出和内存泄漏 内存泄漏:在java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收。 内存泄漏绝大多数情况都是由堆内存泄漏引起的,所以后续没有特别说明则讨论的都是堆…

Linux-centos如何搭建yum源仓库

1.本地搭建(无需连接外网) 1.1检查网络配置,及网络连接 打开虚拟机,点击【编辑——虚拟网络编辑器】 点击【仅主机模式】查看子网段是否和局内IP匹配 进入局内,查看网络IP是否在你上述设置的网段内,如果不…

Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem

Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem 从这一章开始讲负反馈Control系统和小信号建模. 13.2 The Feedback Theorem 首先介绍 Middlebrook’s Feedback Theorem 考虑下面负反馈系统 传输函数 Guo/ui G ( s ) u o u i G ∞ T 1 T G…

1.实用Qt:解决绘制圆角边框时,圆角锯齿问题

目录 问题描述 解决方案 方案1: 方案2: 结果示意图 问题描述 做UI的时候,我们很多时候需要给绘制一个圆角边框,初识Qt绘制的童鞋,可能绘制出来的圆角边框很是锯齿,而且粗细不均匀,如下图&…

Vue | 使用 ECharts 绘制折线图

目录 一、安装和引入 ECharts 二、使用 ECharts 2.1 新增 div 盒子 2.2 编写画图函数 2.3 完整代码结构 三、各种小问题 3.1 函数调用问题 3.2 数据格式问题 3.3 坐标轴标签问题 3.4 间隔显示标签 参考博客:Vue —— ECharts实现折线图 本文是在上…

JVM学习-JVM简介以及其内部结构

目录 1.什么是JVM 2.JVM、JRE、JDK、JavaSE、JavaEE之间的联系 3.JVM的内部结构 4.各部分的作用 4.1 类加载器 4.2 方法区 4.3 堆 ​编辑 4.4 虚拟机栈 4.5 程序计数器 4.6 本地方法栈 4.7 解释器和JIT即时编译器 4.9 GC垃圾回收 5.拓展 5.1一些可能会遇到的问…

opencv安装(C++)并配置vs

准备工作: 1.opencv安装包(此教程使用4.9) 2.visual studio(此教程使用vs2019) opencv安装: 1、下载opencv: 1.1 官网下载:Releases - OpenCV 1.2 百度网盘:链接:https://pan.baidu.com/s/1NpEoFjbbyQJtFD…

CTF-希尔加解密

对于希尔加解密很多writeup都说用在线工具,所以研究了一下,写了一个方便的加解密python代码,根据给定的字母表及私钥字符串,尝试不同纬度不同重叠的加密矩阵输出加解密结果。运行效果如下: 代码文件Hill希尔加解密_fi…

8:00面试,8:06就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到9月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%…