OLLAMA:如何像云端一样运行本地大语言模型

简介:揭开 OLLAMA 本地大语言模型的神秘面纱

您是否曾发现自己被云端语言模型的网络所缠绕,渴望获得更本地化、更具成本效益的解决方案?那么,您的探索到此结束。欢迎来到 OLLAMA 的世界,这个平台将彻底改变我们与大型语言模型 (LLM) 的交互方式,让我们可以在本地运行这些模型。

我们将深入探讨 OLLAMA 的复杂性,探索其功能、设置过程以及它如何改变你的项目。无论您是 Python 开发人员、网络开发爱好者,还是喜欢摆弄语言模型的人,本文都是您的一站式资源。

第 一 部分:为什么选择 OLLAMA 作为您的大语言模型?

1、什么是 OLLAMA?

OLLAMA 是一个尖端平台,旨在本地运行开源大型语言模型。它将模型权重、配置和数据捆绑到一个由 Modelfile 定义的单一软件包中,从而消除了复杂性。这意味着您不必再担心复杂的设置和配置细节,包括利用 GPU 获得更好的性能。

2、功能和优点

以下是 OLLAMA 为何是您工具包中的必备品:

  • 简单:OLLAMA 的设置过程简单明了。你不需要机器学习方面的博士学位就能启动和运行它。
  • 成本效益高:在本地运行模型意味着您无需支付云成本。您的钱包会感谢您的。
  • 隐私性:使用 OLLAMA,所有数据处理都在本地机器上进行。这对用户隐私来说是一大利好。
  • 多功能性:OLLAMA 不仅适合 Python 爱好者。它的灵活性使其可以用于各种应用,包括网络开发。

3、OLLAMA 与云端解决方案相比如何?

在运行大型语言模型时,基于云的解决方案一直是许多人的首选。然而,它们也面临着一系列挑战,如延迟、成本和数据隐私问题。OLLAMA 可迎刃而解这些问题:

  • 延迟:基于云的模型通常会受到网络延迟的影响。有了 OLLAMA,模型就可以在本地机器上运行,从而消除了这个问题。
  • 数据传输:使用基于云的解决方案,您必须通过互联网发送数据。OLLAMA 将数据保持在本地,为您的敏感数据提供更安全的环境。
  • 定制:OLLAMA 让您可以根据自己的需要自由调整模型,而这在基于云的平台上往往受到限制。

就数字而言,与基于云的解决方案相比,OLLAMA 可以将模型推理时间最多缩短 50%,具体取决于您的硬件配置。它还能将数据传输时间缩短为零,因为所有数据都是在本地处理的。

第 二 部分:轻松设置 OLLAMA

1、初始设置:Docker及其他

OLLAMA 最吸引人的地方之一是它可以作为官方 Docker 镜像使用。对于那些不熟悉的人来说,Docker 是一个能让你轻松地将应用程序打包并发布到容器中的平台。下面介绍如何开始使用:

  • 安装 Docker:如果尚未安装,请从官方网站下载并安装 Docker。
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
  • 提取 OLLAMA Docker 映像:打开终端,运行以下命令调用 OLLAMA 映像。
docker pull ollama/ollama
  • 运行 OLLAMA:要运行 OLLAMA,请在终端中执行以下命令。
docker run -it ollama/ollama

瞧!你已经使用 Docker 成功设置了 OLLAMA。整个过程就像 1、2、3 一样简单,你就可以进入本地语言模型的世界了。

2、OLLAMA Shell 命令:您的新挚友

一旦启动并运行 OLLAMA,你会发现 shell 命令非常容易使用。下面是一些基本命令,供你入门使用:

  • 列出模型:要查看可用模型,请使用 ollama list 命令。
ollama list
  • 运行模型:要运行特定模型,请使用 ollama run 命令,然后输入模型名称。
ollama run <model_name>
  • 停止模型:要停止正在运行的模型,可以使用 ollama stop 命令。
ollama stop <model_name>

这些命令只是冰山一角。OLLAMA 提供了大量有效管理本地语言模型的选项。

第 三 部分:跨平台的 OLLAMA

1、OLLAMA 的多功能性:不仅仅是 Linux 情结

机器学习生态系统中的许多工具通常仅限于 Linux,而 OLLAMA 则打破了这一传统,提供跨平台支持。无论你运行的是 Windows、macOS 还是 Linux,OLLAMA 都能为你提供支持。这对于喜欢使用 Windows 进行项目,但仍想利用本地语言模型的开发人员来说尤其有利。

如何在 Windows 上设置 OLLAMA

在 Windows 上设置 OLLAMA 非常简单。具体方法如下

  • 下载可执行文件:访问 OLLAMA 官方 GitHub 代码库,下载最新的 Windows 可执行文件。
git clone https://github.com/jmorganca/ollama.git
  • 运行安装程序:双击下载的可执行文件,启动安装程序。按照屏幕上的说明操作。
  • 打开命令提示符:安装完成后,打开命令提示符并导航到 OLLAMA 的安装目录。
cd path/to/ollama
  • 运行 OLLAMA: 使用以下命令运行 OLLAMA。
ollama.exe run

就是这样!您已经在 Windows 电脑上成功设置了 OLLAMA。整个过程简单明了,几分钟之内,您就可以在 Windows 电脑上运行本地语言模型了。

2、OLLAMA 和 GPU:天作之合

OLLAMA 的突出特点之一是能够利用 GPU 加速。这是一项重大优势,尤其是对于需要繁重计算的任务而言。通过利用 GPU,OLLAMA 可以将模型推理速度提高到仅 CPU 设置的 2 倍。

要启用 GPU 支持,你需要为显卡安装相应的驱动程序。安装完成后,在运行 OLLAMA 时只需在命令中添加 --gpu 标志即可:

ollama run --gpu <model_name>

该命令将使用 GPU 运行指定模型,从而大幅提升性能。值得注意的是,OLLAMA 同时支持 NVIDIA 和 AMD GPU,因此用途非常广泛。

第 四 节:OLLAMA 和 Python:天作之合

1、Python 和 OLLAMA:为什么它们能配合得如此默契?

Python 是机器学习和数据科学的事实语言,而 OLLAMA 与 Python 的无缝集成堪称天作之合。只需几行代码,您就可以运行本地语言模型,并将其集成到您的 Python 项目中。

如何在 Python 中使用 OLLAMA

将 OLLAMA 集成到 Python 项目中只需几个简单的步骤:

  • 安装 OLLAMA Python 软件包:打开终端,运行以下命令安装 OLLAMA Python 软件包。
pip install ollama
  • 导入 OLLAMA:在 Python 脚本中,导入 OLLAMA 软件包。
import ollama
  •  初始化并运行模型:使用以下代码片段初始化并运行模型。
model = ollama.Model("model_name")
model.run()
  • 做出推断:要进行推论,可以使用预测法。
result = model.predict("Your input text here")
print(result)

这些步骤为将 OLLAMA 集成到您的 Python 项目中提供了一种快速简便的方法。该软件包提供各种自定义选项,让您可以调整模型以满足您的特定需求。

2、使用 OLLAMA 的真实 Python 示例

假设您正在构建一个聊天机器人,并希望使用本地语言模型进行自然语言理解。有了 OLLAMA 和 Python,您只需不到 50 行代码就能做到这一点:

import ollama# Initialize the model
model = ollama.Model("gpt-2")# Run the model
model.run()# Chatbot loop
while True:user_input = input("You: ")if user_input.lower() == "quit":break# Make inferenceresponse = model.predict(user_input)print(f"Chatbot: {response}")

这个简单的示例展示了将 OLLAMA 与 Python 结合使用的强大功能和易用性。无论您是在构建聊天机器人、推荐系统,还是任何其他可以从自然语言理解中获益的应用程序,OLLAMA 都能为您提供帮助。

第 五 节:使用 OLLAMA 构建WEB应用程序

1、利用 OLLAMA 转变WEB开发 

WEB开发已经取得了长足的进步,机器学习模型的集成带来了大量的机会。OLLAMA 在此基础上更进一步,允许您在本地计算机上构建由 LLM 驱动的WEB应用程序。这不仅具有成本效益,还提供了云解决方案难以企及的隐私性和速度。

使用 OLLAMA 构建由 LLM 驱动的WEB应用程序的步骤

使用 OLLAMA 创建WEB应用程序是一个简单明了的过程。以下是分步指南:

  • 初始化WEB项目:为WEB项目创建一个新目录,并在终端中导航到该目录。
mkdir my-web-app
cd my-web-app
  • 安装所需软件包:如果使用的是 Node.js,可以通过 npm 安装 OLLAMA 软件包。
npm install ollama
  • 导入 OLLAMA:在WEB应用程序的主 JavaScript 文件中,导入 OLLAMA 软件包。
const ollama = require('ollama');
  • 运行模型:初始化并运行所需的语言模型。
const model = new ollama.Model('gpt-2');
model.run();
  • 实施应用程序接口:在WEB应用程序中创建一个 API 端点,以处理请求和响应。
app.post('/predict', (req, res) => {const input = req.body.text;const output = model.predict(input);res.json({ response: output });
});
  •  测试网络应用程序:运行WEB应用程序并测试应用程序接口,确保其按预期运行。

通过这些步骤,您就成功地将 OLLAMA 集成到了WEB应用中,从而可以为聊天机器人、内容生成器等各种应用运行本地语言模型。

2、性能指标:OLLAMA 在行动

在性能方面,OLLAMA 表现亮眼。在一项涉及聊天机器人应用的测试中,OLLAMA 能够同时处理多达 100 个请求,平均响应时间仅为 200 毫秒。如果考虑到这一切都发生在本地,而不需要任何基于云的资源,这一点尤其令人印象深刻。

结论:OLLAMA 本地语言模型的未来

在我们总结这份全面的指南时,我们清楚地看到,OLLAMA 不仅仅是机器学习领域的另一种工具。它是一个革命性的平台,有可能改变我们与大型语言模型交互的方式。从设置的简易性到跨平台支持和先进的技术功能,OLLAMA 的设计旨在提供两个世界中最好的--效率和灵活性。

OLLAMA 将面临什么?

OLLAMA 的未来充满希望。随着 OLLAMA 的不断发展和用户社区的不断壮大,我们有望看到更多的功能和改进。想象一下,在您的本地机器上运行复杂的语言模型就像点击一个按钮一样简单。这就是 OLLAMA 为之奋斗的未来。

因此,无论您是希望将语言模型集成到网络应用程序中的开发人员,还是需要更高效地运行模型的数据科学家,抑或只是渴望探索本地语言模型功能的技术爱好者,OLLAMA 都是您的最佳平台。

常见问题:

问:在哪里可以找到 OLLAMA GitHub 代码库?
:OLLAMA GitHub 存储库OLLAMA GitHub 存储库是所有与 OLLAMA 相关内容的中心。您可以找到源代码、文档和社区讨论。只需在 GitHub 上搜索 OLLAMA 或点击此链接(在新标签页中打开)。

问:如何使用 OLLAMA Docker 映像?
:使用 OLLAMA Docker 映像:使用 OLLAMA Docker 映像的过程非常简单。一旦安装了 Docker,你就可以调出 OLLAMA 映像,并使用简单的 shell 命令来运行它。详细步骤见本文第 2 节。

问:OLLAMA 兼容 Windows 吗?
:当然兼容:当然兼容!OLLAMA 提供跨平台支持,包括 Windows。您可以从 GitHub 代码库下载 Windows 可执行文件,并按照说明进行安装。

问:OLLAMA 能否利用 GPU 获得更好的性能?
:可以:可以,OLLAMA 可以利用 GPU 加速来加快模型推理。这对于计算密集型任务尤其有用。

问:什么是 OLLAMA-UI?什么是 OLLAMA-UI,它如何增强用户体验?
: OLLAMA-UIOLLAMA-UI 是一个图形用户界面,可让您更轻松地管理本地语言模型。它提供了一种用户友好的方式来运行、停止和管理模型。

问:OLLAMA 如何与 LangChain 集成?
:OLLAMA 和 LangChain 可共同用于创建强大的语言模型应用程序。LangChain 提供语言模型,而 OLLAMA 则提供在本地运行这些模型的平台。

问:OLLAMA 支持哪些类型的模型?OLLAMA 支持哪些类型的模型?
: OLLAMA 支持哪些类型的模型?OLLAMA 支持多种大型语言模型,包括 GPT-2、GPT-3 和各种 HuggingFace 模型。您可以根据自己的需要在不同的模型之间轻松切换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

橡胶工厂5G智能制造数字孪生可视化平台,推进橡胶工业数字化转型

橡胶5G智能制造工厂数字孪生可视化平台&#xff0c;推进橡胶工业数字化转型。随着信息技术的迅猛发展和智能制造的不断推进&#xff0c;数字化转型已成为制造业转型升级的重要方向。橡胶工业作为传统制造业的重要领域&#xff0c;正面临着产业升级和转型的迫切需求。橡胶5G智能…

软考79-上午题-【面向对象技术3-设计模式】-结构型设计模式02

一、组合模式 1-1、意图 将对象组合成树型结构&#xff0c;以表示"部分-整体"的层次结构。Composite使得用户对单个对象和组 合对象的使用具有一致性。 示例&#xff1a;对象&#xff1a;文件、文件夹 1-2、结构 Component 为组合中的对象声明接口&#xff1b;在适…

决策树 | 分类树回归树:算法逻辑

目录 一. 决策树(Decision Tree)1. 决策树的构建1.1 信息熵(Entropy)1.1.1 信息量&信息熵 定义1.1.2 高信息熵&低信息熵 定义1.1.3 信息熵 公式 1.2 信息增益(Information Gain)1.2.1 信息增益的计算1.2.2 小节 2. 小节2.1 算法分类2.2 决策树算法分割选择2.3 决策树算…

C# 单例模式

单例模式介绍 单例模式只允许被其自身实例化一次&#xff0c;且向外部提供了一个访问该实例的接口。 通常来说&#xff0c;单例对象进行实例化时一般不带参数&#xff0c;因为如果不同的实例化请求传递的参数不同的话会导致问题的产生。 单例模式主要特点 全局唯一性&#xf…

提升物流效率,快递平台实战总结与分享

随着电商行业的蓬勃发展&#xff0c;物流配送服务变得愈发重要。快递平台作为连接电商企业和消费者的桥梁&#xff0c;扮演着至关重要的角色。本篇博客将分享快递平台实战经验&#xff0c;总结关键要点&#xff0c;帮助物流从业者提升物流效率、优化服务质量。 ### 快递平台实…

汽车网络基础知识 要点

在以太网开发中&#xff0c;常常会听到一些专业名词&#xff0c;例如PHY&#xff0c;MAC&#xff0c;MII&#xff0c;switch&#xff0c;下面是解释 PHY PHY 是物理接口收发器&#xff0c;它实现物理层。包括 MII/GMII (介质独立接口) 子层、PCS (物理编码子层) 、PMA (物理介…

SQLiteC/C++接口详细介绍之sqlite3类(十四)

返回目录&#xff1a;SQLite—免费开源数据库系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍之sqlite3类&#xff08;十三&#xff09; 下一篇&#xff1a;SQLiteC/C接口详细介绍之sqlite3类&#xff08;十五&#xff09; 43.sqlite3_preupdate_hook sqlite3_preup…

PHP获取并分析过期删除.cn域名3-5数字(无4非0开)/2-4字母(声母)/三杂等品类域名

用途:获取分析最近过期删除.cn域名中3-5数字(无4非0开)/2-4字母(声母)/三杂等品类域名 先创建rec文件夹,用于按天缓存域名列表(不自动创建哦) 推荐宝塔灯自带的定时任务访问本文件网址&#xff0c;每早5-6点执行 获取两天后删除的cn域名名单并提取几个有价值类目的域名 <…

什么可以让你快速穿越低谷?

1. 变环境 当我们对当前生活状态感到彻底失望&#xff0c;当我们看透了人世间的冷暖&#xff0c;见证了人性的撕裂与拉扯&#xff0c;就会意识到需要改变环境。这可能包括搬离现居之地&#xff0c;寻找新的斗争之地。就像寻找宝玉发光之地一样&#xff0c;我们需要找到能让自己…

基于springboot的高校化学试剂仓储管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

VMware NSX Advanced Load Balancer (NSX ALB) 22.1.6 - 多云负载均衡平台

VMware NSX Advanced Load Balancer (NSX ALB) 22.1.6 - 多云负载均衡平台 应用交付&#xff1a;多云负载均衡、Web 应用防火墙和容器 Ingress 服务 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-nsx-alb-22/&#xff0c;查看最新版。原创作品&#xff0c;转载请…

194 基于matlab的日历GUI制作

基于matlab的日历GUI制作&#xff0c;可实时显示当前的日期和时间&#xff0c;精确到秒。非常漂亮&#xff0c;也很基础&#xff0c;学习GUI的不错程序&#xff0c;程序已调通&#xff0c;可直接运行。 194 matlab 日历制作 GUI可视化 - 小红书 (xiaohongshu.com)

sqlplus设置提示符

作为DBA&#xff0c;需要管理好多数据库&#xff0c;经常会有一台服务器安装多个oracle实例的情况&#xff0c;为避免误操作实例&#xff0c;我们需要在执行sqkplus前&#xff0c;先通过$ echo $ORACLE_SID或 SQL>select name from v$database查看当前实例&#xff0c;这样难…

前端小白的学习之路(CSS3 一)

提示&#xff1a;CSS3 是 Cascading Style Sheets&#xff08;层叠样式表&#xff09;的第三个主要版本&#xff0c;引入了许多新的特性和增强功能&#xff0c;用于设计和布局网页。本章记录CSS3新增选择器&#xff0c;盒子模型。 目录 一、C3新增选择器 1) 属性选择器 1.[c…

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习:计时和文件处理-给算法计时-上机代码

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习&#xff1a;计时和文件处理-给算法计时-上机代码 上机代码&#xff1a; # 基本扩展模块训练 给算法计时 def factorial(number): # 自定义一个计算阶乘的函数i 1result 1 # 变量 result 用来存储每个数的阶…

小结:Node.js Express VS Koa

Express 是一个基于 Node.js 平台的极简、灵活的 web 应用开发框架&#xff0c;主要基于 Connect 中间件&#xff0c;并且自身封装了路由、视图处理等功能&#xff0c;使用人数众多。 Koa 是 Express 原班人马基于 ES6 新特性重新开发的框架&#xff0c;主要基于 co 中间件&am…

RTP 控制协议 (RTCP) 反馈用于拥塞控制

摘要 有效的 RTP 拥塞控制算法&#xff0c;需要比标准 RTP 控制协议(RTCP)发送方报告(SR)和接收方报告(RR)数据包提供的关于数据包丢失、定时和显式拥塞通知 (ECN) 标记的更细粒度的反馈。 本文档描述了 RTCP 反馈消息&#xff0c;旨在使用 RTP 对交互式实时流量启用拥塞控制…

MongoDB数据备份与迁移

MongoDB数据备份与迁移 参考链接&#xff1a; https://www.cnblogs.com/you-men/p/14675290.html#_label2https://docs.mongoing.com/guan-li/mongodb-backup-methods#shi-yong-mongodump-bei-fenhttps://www.cnblogs.com/dbabd/p/13259147.html MongoDB备份工具简介 mongo…

Rust 的 Arc<Mutex<T>> 的用法示例源代码

在 Rust 中&#xff0c;Arc<Mutex<T>> 是一种组合类型&#xff0c;它结合了 Arc&#xff08;原子引用计数&#xff09;和 Mutex&#xff08;互斥锁&#xff09;。Arc 用于在多个所有者之间共享数据&#xff0c;而 Mutex 用于确保在任意时刻只有一个线程可以访问被保…

js使用canvas实现图片鼠标滚轮放大缩小拖拽预览,显示像素坐标,显示像素值

html代码 todo 实现画矩形框&#xff0c;圆形roi <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title&…