算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和

这几道题对于我们前面讲过的一维、二维前缀和进行了运用,包含了面对特殊情况的反操作

目录

4.除自身以外数组的乘积

4.1解析

4.2题解

5.和为K的子数组

5.1解析

5.2题解

6.和可被K整除的子数组

6.1解析

6.2题解

7.连续数组

7.1题解

7.2题解

8.矩阵区域和

8.1解析

8.2题解



4.除自身以外数组的乘积

题目:. - 力扣(LeetCode)

4.1解析

这道题实际上和前一道"中心下标"的题目非常相似,只不过这道题要求的是"前缀积"和后缀积

那么我们用f来表示前缀积:

如图所示:f[i] 表示 i之前所有元素之积(不包括i元素),那么f[i] = f[i-1] * nums[i-1];

同理,如果我们用g 表示 i之后所有元素的积(不包括i元素),那么g[i] = g[i + 1] * nums[i+1]

其中有细节问题:

当i= 0时,是表示0之前所有元素之积,但是0之前没有元素了,我们前面是设0之前的元素为0,但是由于这道题是求积,那么应该设为1,即f[0] = g[n-1] = 1(n为数组长度)

在创建前缀和数组和后缀和数组后,我们仅需要遍历数组,计算f[i] * g[i]即可

4.2题解
class Solution {public int[] productExceptSelf(int[] nums) {int n = nums.length;int[] f = new int[n];int[] g = new int[n];f[0] = g[n-1] = 1;for(int i = 1; i < n; i++){f[i] = f[i-1] * nums[i-1];}for(int i = n-2; i >= 0; i--){g[i] = g[i+1] * nums[i+1];}int[] ans = new int[n];for(int i = 0; i < n; i++){ans[i] = f[i] * g[i];}return ans;}}

5.和为K的子数组

题目:. - 力扣(LeetCode)

5.1解析

看到"子数组"可能我们会想到利用双指针(滑动窗口)来做,但是实际上这道题利用滑动窗口是不行的

我们前面遇到的滑动窗口题目,left和right指针都是往同一个方向移动,但是由于这道题出现了0 和 负数,那么就会出现right往回走的情况,滑动窗口的优势就没有了

实际上我们应该想到的是前缀和的算法思想,但是前缀和记录的是从原点到某个位置的所有元素的和,但是我们要求的是某一段子区间.

类似这种题目,我们可以转变一下思路:

如图所示,我们可以通过计算i位置之前,满足sum[j] = sum[i] - k的点的个数,这样侧面求出来满足子区间元素和为k的个数

但是有几个细节问题:

(1) 我们怎么知道i前面满足条件的前缀和有几个?? 是从0位置开始遍历判断吗??很显然,这样做的时间复杂度将会不如暴力解法

我们可以利用哈希表来记录,某一个前缀和的值,以及出现的个数,这样但我们在判断i之前多少个前缀和满足 sum[j] = sum[i] - k时,只需要从hash表中直接拿值即可

(2)如果我们利用哈希表来存储,那么就会出现一个问题:

假设数组是上图这样的,k=0,那么显然 第一个 0 就可以作为满足情况的子数组之一,但是我们在遍历的时候是从第一个开始记录的,当记录第一个元素之前哈希表中是没有值的.因此我们需要先让哈希表里面有一个0的值,为1,即hash.put(0,1).这样,我们判断第一个数的时候,加入满足要求,就count++;

(3)既然我们不用重新回头遍历数组,那么实际上前缀和数组也没必要创建,因为都在哈希表中记录着,那么我们就仅需要设置一个变量记录当前的前缀和是多少即可

这么讲实际上有点抽象,我们通过代码来演示:

5.2题解
 class Solution {public int subarraySum(int[] nums, int k) {Map<Integer,Integer> map = new HashMap<>();map.put(0,1);int sum = 0, count = 0;for(int i = 0; i < nums.length; i++){sum += nums[i];count += map.getOrDefault(sum-k,0);map.put(sum,map.getOrDefault(sum,0)+1);}return count;}}

6.和可被K整除的子数组

题目:. - 力扣(LeetCode)

6.1解析

要想做这道题,需要有两个前提知识点的补充:

(1)同余定理

如果(a - b) % == 0 ,那么a % p == b % p

(2)java 对于负数取余,符号是取决于左边数的正负.但是对于同余定理,这样的规则是不满足的,举个例子: (3 - (-2)) % 5 == 0,那么根据同余定理,就有 3 % 5 == -2 % 5,但是在java / c++很显然这样是不满足的.因此我们就要进行修正,就相当于我们如何让 3 % 5 == -2 % 5 在java中取余是成立的?? 我们可以这样操作: 让 a % p 后 假设 p,如 -2 % 5 + 5 就能得到3,但是这样正负不统一,因为正数 % 正数本来就是正数,不需要修正,修正了结果反而不对,我们只需在计算结果后面再 % p即可, 因此最后取余的表达式为:( a % p + p) % p

理解完上述的两个知识点后,我们回到这道题:

还是一样,由于出现了负数和 0 ,导致用滑动窗口算法不行的; 既然提到了子数组的和,我们不妨试试前缀和算法

和上一道题一样,前缀和记录的是从原点到某个位置的所有元素的和,但是我们要求的是某一段子区间.我们就可以利用前面讲到的方法转变一下思路:

我们要求的是满足(sum[i] - x) % k == 0的子区间的个数,这个式子不就是 同余定理左边的式子吗,那么就一定有 sum[i] % k == x % k,至于sum[i] 和 x就都是我们熟悉的前缀和了

我们就可以使用和上一题一样的方法来解决这道题,但是有一个注意事项

还是一样,假设我们第一个数就是满足条件的子数组,那么我们就要在第一个数前面找到一个子区间的元素和也能被k整除(实际上就是0),但是前面没有元素了,哈希表中没有存放任何值,那么这种情况就会漏掉.因此我们要在一开始就在哈希表中存放0这个值,即hash.put(0,1)

6.2题解
 
class Solution {public int subarraysDivByK(int[] nums, int k) {Map<Integer,Integer> hash = new HashMap<>();int count = 0;hash.put(0,1);int sum = 0;for(int i = 0; i < nums.length; i++){sum += nums[i];int r = (sum % k + k) % k;count += hash.getOrDefault(r,0);hash.put(r,hash.getOrDefault(r,0)+1);}return count;}}

7.连续数组

题目:. - 力扣(LeetCode)

7.1题解

此题要我们找出最长一段子区间,满足区间中0 的个数和1的个数是一样的,那么这道题能不能使用滑动窗口去做呢?答案是不行的.因为数组中存在0,right指针是可能会回头的;那么我们转变一下思路,我们尝试把数组里面的0全部换成-1,那么当一段子区间的元素和为0的时候,就一定满足1的个数和0的个数一样,那么这样的话,我们就把问题转回求一段子区间的元素和为0的问题,那么就和我们前面的两道题一样

但是有几个细节问题:

1.这道题求的是最长的子区间,但是我们之前求的都是数量.因此这道题我们要改变哈希表的存储内容

假设我们遍历到i,那么这时候就要在前面找到一个子区间的长度也为sum,这时候就会出现两种情况

(1)哈希表里面没有sum,即在这之前的所有前缀和没有一个为sum的,这时候我们只需要将他存储在哈希表中即可,由于是要长度,那么我们哈希表的值就要存这个点的下标

(2)如果哈希表中存在,那么就要更新我们最终返回的长度,但是哈希表中的值是不需要修改的.因为我们要的是最长的子区间,那么我们在寻找的时候就要找最短前缀和,由于我们是从前往后遍历,那么此前如果存有sum,那么一定是最短的前缀和,此时对应子区间就最长

2.对于边界的处理

假设我们的数组是这样的,那么不难发现,整个数组就是满足条件的一种情况,按照我们前面的思路,那么这个时候就要在0下标之前找到一个前缀和为0的区间,但是实际上没有区间了,因此我们既要预处理,在下标为-1的位置存放前缀和为0的值

7.2题解
 
class Solution {public int findMaxLength(int[] nums) {Map<Integer,Integer> hash = new HashMap<>();int len = 0;int sum = 0;hash.put(0,-1);for(int i = 0; i < nums.length; i++){sum += nums[i] == 0 ? -1 : 1;//将所有的0变成-1if(hash.containsKey(sum)){len = Math.max(len,i-hash.get(sum));}else{hash.put(sum,i);}}return len;}}

8.矩阵区域和

题目:. - 力扣(LeetCode)

8.1解析

如图所示,题目实际上就是要求给定二维数组中,每个坐标从(i - k ,j-k) d到 (i+k,j+k)之间的元素之和,那么这不就是我们之前讲过的前缀和吗

(1)预处理dp数组

我们还是预处理一个dp数组,其中dp[i] [j]表示从原点到 (i,j)之间的元素之和.我们前面推导过:dp[i] [j] = dp[i-1] [j] + dp[i] [j - 1] + arr[i] [j] - dp[i-1] [j-1],但是注意:我们前面推导这个公式的前提是arr数组的下标是从1开始的,但是这道题的数组是给定的,从0开始的,印象我们需要修改公式:dp[i] [j] = dp[i-1] [j] + dp[i] [j - 1] + arr[i-1] [j-1] - dp[i-1] [j-1],那么我们就可以利用这个公式对dp数组进行初始化

(2)使用dp数组

接下来我们就要使用dp数组,我们也推导过.计算计算(x1, y1) ~ (x2, y2)的元素和的公式为:dp[x2] [y2] - dp[x1-1] [y2] - dp[x2] [y1 -1] + dp[x1-1] [y1-1],当我们创建一个返回数组ret的时候,那么ret[i] [j] 就是 (i - k ,j-k) d到 (i+k,j+k),但是要注意边界条件,即小于0的范围我们是当成0处理的,同样大于n-1的也是一样,那么我们的范围就需要改成:(max(i - k,0) , max(j-k,0) ) ~ (min(i + k,n-1) , min(j+k,n-1) );这样我们就直接省去了超出范围的情况

(3)下标映射关系

最后还有一个细节问题,就是ret数组和dp数组的下标映射关系,由于我们dp数组的下标是从1开始的,但是我们返回的ret数组的下标必须是从0开始的,因此实际上我们dp数组的下标是比ret数组的下标大1的,即在dp上的(i,j)实际上对应ret数组上的是(i-1,j-1)

8.2题解
       
public int[][] matrixBlockSum(int[][] mat, int k) {int n = mat.length;int m = mat[0].length;int[][] dp = new int[n+1][m+1];int[][] ret = new int[n][m];for(int i = 1; i <= n; i++){for(int j = 1; j <= m; j++){dp[i][j] = dp[i-1][j] + dp[i][j-1] + mat[i-1][j-1] - dp[i-1][j-1];}}for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){int x1 = Math.max(i-k,0)+1, y1 = Math.max(j-k,0)+1;int x2 = Math.min(i+k,n-1)+1, y2 = Math.min(j+k,m-1)+1;ret[i][j] = dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1];}}return ret;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/750231.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GET和POST方法的区别

GET和POST的区别 在我们开发项目的时候常常会在Controller层使用到POST方法或者GET方法&#xff0c;犹豫到底将接口定义为GET方法还是POST方法&#xff1f;那这两者之间有什么区别呢&#xff1f; 看一下官方定义&#xff1a; GET 和 POST 是 HTTP 协议中最常用的两种请求方法…

爬虫学习 Scrapy中间件代理UA随机selenium使用

目录 中间件UA、代理处理---process_requestUA随机 代理处理seleniumscrapy 中间件 控制台操作 (百度只起个名 scrapy startproject mid scrapy genspider baidu baidu.com setting.py内 ROBOTSTXT_OBEY FalseLOG_LEVEL "WARNING"运行 scrapy crawl baidu middle…

ArcGIS分享图层数据的最佳方法

在工作中&#xff0c;经常需要将图层数据分享给其他人。 如下图所示&#xff0c;需要分享的是【CJDCQ】和【GHDLTB】&#xff0c;图层带有符号系统&#xff1a; 一、分享gdb数据库及lyr文件 分享数据自然要找到源数据&#xff1a; 但是&#xff0c;gdb数据是不带符号系统的&a…

微信小程序开发系列(三十四)·自定义组件的创建、注册以及使用(数据和方法事件的使用)

目录 1. 分类和简介 2. 公共组件 2.1 创建 2.2 注册 2.3 使用 3. 页面组件 3.1 创建 3.2 注册 3.3 使用 4. 组件的数据和方法的使用 4.1 组件数据的修改 4.2 方法事件的使用 1. 分类和简介 小程序目前已经支持组件化开发&#xff0c;可以将页面中的功能…

springboot基于spring boot的在线答题微信小程序

摘 要 在线答题微信小程序是考试中重要的一环&#xff0c;在线答题是学生获取任务信息的主要渠道。为了方便学生能够在网站上查看任务信息、考试&#xff0c;于是开发了基于 springboot框架设计与实现了一款简洁、轻便的在线答题微信小程序。本微信小程序解决了在线答题事务中的…

2.3 HTML5新增的常用标签

2.3.1 HTML5新增文档结构标签 在HTML5版本之前通常直接使用<div>标签进行网页整体布局&#xff0c;常见布局包括页眉、页脚、导航菜单和正文部分。为了区分文档结构中不同的<div>内容&#xff0c;一般会为其配上不同的id名称。例如&#xff1a; <div id"h…

FFmpeg转码参数说明及视频转码示例

-b : 设置音频或者视频的转码码率 -b:v 只设置视频码率 -b:a 只设置音频码率 -ab: 只设置音频码率, 默认码率大小为: 128k bit/s -g: 设置视频GOP大小,表示I帧之间的间隔,默认为12 -ar: 设置音频采样率,默认0 -ac: 设置音频通道数量 默认0 -bf: 设置连…

CTFHUB-web-信息泄漏

题目所在位置&#xff1a;技能树->web->信息泄漏 目录遍历 打开题目&#xff0c;我们进入的是这个页面 翻译过来就是 得到的信息就是&#xff1a;flag要在这些目录里面寻找&#xff0c;我们直接一个一个点开查看就行 发现得到一个flag.txt&#xff0c;点击打开得到flag …

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:UIExtensionComponent (系统接口))

UIExtensionComponent用于支持在本页面内嵌入其他应用提供的UI。展示的内容在另外一个进程中运行&#xff0c;本应用并不参与其中的布局和渲染。 通常用于有进程隔离诉求的模块化开发场景。 说明&#xff1a; 该组件从API Version 10开始支持。后续版本如有新增内容&#xff0…

【Java】List, Set, Queue, Map 区别?

目录 List, Set, Queue, Map 区别&#xff1f; Collection和Collections List ArrayList 和 Array区别&#xff1f; ArrayList与LinkedList区别? ArrayList 能添加null吗&#xff1f; ArrayList 插入和删除时间复杂度&#xff1f; LinkedList 插入和删除时间复杂度&…

计算机网络-数据链路层

一、认识以太网 "以太网" 不是⼀种具体的网络&#xff0c;而是一种技术标准; 既包含了数据链路层的内容, 也包含了⼀些物理 层的内容。 例如&#xff1a;规定了网络拓扑结构&#xff0c;访问控制方式&#xff0c;传输速率等; 例如&#xff1a;以太网中的网线必须使用…

vxe-table表格组件的使用已经query函数扩展

最近新项目使用vue3typescript开发后台管理系统&#xff0c;基本上展示内容一致表格的方式展示&#xff0c;所以使用vxe-table组件来开发&#xff0c;主要是为了方便使用工具栏&#xff0c;以及其他表格操作。 vxe-table 开发文档&#xff1a;https://vxetable.cn/#/table/sta…

免费开源多层级多标签文本分类|文本分类接口|文本自动分类

一、开源项目介绍 一款多模态AI能力引擎&#xff0c;专注于提供自然语言处理&#xff08;NLP&#xff09;、情感分析、实体识别、图像识别与分类、OCR识别和语音识别等接口服务。该平台功能强大&#xff0c;支持本地化部署&#xff0c;并鼓励用户体验和开发者共同完善&#xf…

火车订票管理系统|基于springboot框架+ Mysql+Java+B/S结构的火车订票管理系统设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 管理员功能登录前台功能效果图 用户功能模块 系统功能设计 数据库E-R图设计 lunwen…

代码随想录算法训练营第二十五天 | 216. 组合总和 III、17. 电话号码的字母组合

代码随想录算法训练营第二十五天 | 216. 组合总和 III、17. 电话号码的字母组合 216. 组合总和 III题目解法 17. 电话号码的字母组合题目解法 感悟 216. 组合总和 III 题目 解法 修改上一天组合的代码 class Solution { public:vector<vector<int>> result;vect…

双向SSM: Vision Mamba Encoder

文章目录 Vision Mamba Encoder初始化输入映射序列变换参数映射BC参数映射delta参数映射 SSM参数初始化A , D矩阵初始化delta参数初始化 双向SSM初始化参数初始化 前向输入映射fast_pathuse_fast_pathno use_fast_path 双向SSMv1前向后向 v2前向后向 Vision Mamba Encoder Vis…

数据结构的概念大合集04(队列)

概念大合集04 1、队列1.1 队列的定义1.2队列的顺序存储1.2.1 顺序队1.2.2 顺序队的基本运算的基本思想1.2.3 顺序队的4要素的基本思想 1.3 环形队列1.3.1 环形队列的定义1.3.1 环形队列的实现 1.4 队列的链式存储1.4.1 链队1.4.2 链队的实现方式1.4.3 链队的4要素的基本思想 1.…

C语言之快速排序

目录 一 简介 二 代码实现 快速排序基本原理&#xff1a; C语言实现快速排序的核心函数&#xff1a; 三 时空复杂度 A.时间复杂度 B.空间复杂度 C.总结&#xff1a; 一 简介 快速排序是一种高效的、基于分治策略的比较排序算法&#xff0c;由英国计算机科学家C.A.R. H…

Arthas使用案例(二)

说明&#xff1a;记录一次使用Arthas排查测试环境正在运行的项目BUG&#xff1b; 场景 有一个定时任务&#xff0c;该定时任务是定时去拉取某FTP服务器上的文件&#xff0c;进行备份、读取、解析等一系列操作。 而现在&#xff0c;因为开发环境是Windows&#xff0c; 线上项…

FFmpeg 常用命令汇总

​​​​​​经常用到ffmpeg做一些视频数据的处理转换等&#xff0c;用来做测试&#xff0c;今天总结了一下&#xff0c;参考了网上部分朋友的经验&#xff0c;一起在这里汇总了一下。 1、ffmpeg使用语法 命令格式&#xff1a; ffmpeg -i [输入文件名] [参数选项] -f [格…