💡💡💡本文改进内容:本文针对Pixel-wise regression的任务,提出了一种更加精细的双重注意力机制——极化自注意力(Polarized Self-Attention),效果优于CBAM、SE等经典注意力。
yolov9-c-CoordAtt summary: 972 layers, 51024476 parameters, 51024444 gradients, 238.9 GFLOPs
改进结构图如下:
YOLOv9魔术师专栏
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨
🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀
🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉
YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等
YOLOv9魔术师
💡💡💡全网独家首发创新(原创),适合paper !!!
💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!
💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!
1.YOLOv9原理介绍
论文: 2402.13616.pdf (arxiv.org)
代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。
YOLOv9框架图
1.1 YOLOv9框架介绍
YOLOv9各个模型介绍
2. Polarized Self-Attention
论文:https://export.arxiv.org/pdf/2107.00782.pdf
Polarized self-attention是一种改进的自注意力机制,旨在提高自注意力模型的效率和准确性。传统的自注意力机制通常需要计算所有位置对所有位置的注意力,这会导致计算复杂度的增加和模型的训练时间的延长。Polarized self-attention通过引入极化因子来减少需要计算的位置对之间的注意力,从而提高自注意力模型的效率。极化因子是一个向量,可以将其与每个位置的向量点积,以确定哪些位置需要进行注意力计算。这种方法可以通过在保持准确度的同时减少计算量来提高自注意力模型的效率。
基于双重注意力机制,本文针对Pixel-wise regression的任务,提出了一种更加精细的双重注意力机制——极化自注意力(Polarized Self-Attention)。作为一个即插即用的模块,在人体姿态估计和语义分割任务上,作者将它用在了以前的SOTA模型上,并达到了新的SOTA性能,霸榜COCO人体姿态估计和Cityscapes语义分割。
注意力机制是一个被广泛应用在各种CV任务中的方法。注意力机制根据施加的维度大致可以分为两类:通道注意力和空间注意力。对于通道注意力机制,代表性的工作有SENet、ECANet;对于空间注意力机制,代表性的工作有Self-Attention。随着空间和通道注意力机制的提出,很自然的,结合空间和通道两个维度的双重注意力机制也被提出,代表工作有CBAM,DANet。
作者提出了一个即插即用的模块——极化自注意力机制( Polarized Self-Attention(PSA)),用于解决像素级的回归任务,相比于其他注意力机制,极化自注意力机制主要有两个设计上的亮点:
1)极化滤波( Polarized filtering):在通道和空间维度保持比较高的resolution(在通道上保持C/2的维度,在空间上保持[H,W]的维度 ),这一步能够减少降维度造成的信息损失;
2)增强(Enhancement):组合非线性直接拟合典型细粒度回归的输出分布。
3.Polarized Self-Attention加入到YOLOv9
3.1新建py文件,路径为models/attention/attention.py
###################### PolarizedSelfAttention #### start by AI&CV ###############################
from torch import nn
from torch.nn import initclass PolarizedSelfAttention(nn.Module):def __init__(self,c1, channel=512):super().__init__()self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))self.softmax_channel = nn.Softmax(1)self.softmax_spatial = nn.Softmax(-1)self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))self.ln = nn.LayerNorm(channel)self.sigmoid = nn.Sigmoid()self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))self.agp = nn.AdaptiveAvgPool2d((1, 1))def forward(self, x):b, c, h, w = x.size()# Channel-only Self-Attentionchannel_wv = self.ch_wv(x) # bs,c//2,h,wchannel_wq = self.ch_wq(x) # bs,1,h,wchannel_wv = channel_wv.reshape(b, c // 2, -1) # bs,c//2,h*wchannel_wq = channel_wq.reshape(b, -1, 1) # bs,h*w,1channel_wq = self.softmax_channel(channel_wq)channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1) # bs,c//2,1,1channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,1).reshape(b, c, 1, 1) # bs,c,1,1channel_out = channel_weight * x# Spatial-only Self-Attentionspatial_wv = self.sp_wv(x) # bs,c//2,h,wspatial_wq = self.sp_wq(x) # bs,c//2,h,wspatial_wq = self.agp(spatial_wq) # bs,c//2,1,1spatial_wv = spatial_wv.reshape(b, c // 2, -1) # bs,c//2,h*wspatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2) # bs,1,c//2spatial_wq = self.softmax_spatial(spatial_wq)spatial_wz = torch.matmul(spatial_wq, spatial_wv) # bs,1,h*wspatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w)) # bs,1,h,wspatial_out = spatial_weight * xout = spatial_out + channel_outreturn out###################### PolarizedSelfAttention #### end by AI&CV ###############################
3.2修改yolo.py
1)首先进行引用
from models.attention.attention import *
2)修改def parse_model(d, ch): # model_dict, input_channels(3)
在源码基础上加入PolarizedSelfAttention
elif m is nn.BatchNorm2d:args = [ch[f]]###attention #####elif m in {EMA_attention,CoordAtt,PolarizedSelfAttention}:c2 = ch[f]args = [c2, *args]###attention #####
3.3 yolov9-c-PolarizedSelfAttention.yaml
# YOLOv9# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []], # conv down[-1, 1, Conv, [64, 3, 2]], # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]], # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3# avg-conv down[-1, 1, ADown, [256]], # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5# avg-conv down[-1, 1, ADown, [512]], # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7# avg-conv down[-1, 1, ADown, [512]], # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9[-1, 1, PolarizedSelfAttention, [512]], # 10]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]], # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]], # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]], # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 17 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 14], 1, Concat, [1]], # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 20 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 11], 1, Concat, [1]], # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 23 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]], # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]], # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 29# avg-conv down fuse[-1, 1, ADown, [256]], # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 32# avg-conv down fuse[-1, 1, ADown, [512]], # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 35# avg-conv down fuse[-1, 1, ADown, [512]], # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 38# detection head# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)]